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Interpretation of tracer tests in geothermal reservoirs is carried out by fitting the measured data either with
simplified two-dimensional (2-D) analytical solutions or with complex numerical models. Available analytical
solutions commonly only describe isotropic conditions in 1-D or 2-D, which is generally unsatisfactory to
construct realistic reservoir models. Moreover, due to the large spatial and temporal scale of a tracer test in deep
reservoirs, the concentration levels measured in the field are relatively low due to dispersion that complicates the
assessment of breakthrough curve tailing and residence time. Fitting tracer data with fully resolving 3-D nu-
merical models thus may be more appropriate, but even with a rich set of field data, reliable calibration is often
compromised by the high computational effort and data hunger of such models. In this study, an advanced
workflow is presented for evaluating tracer test data. Firstly, a 3-D analytical model in which solute transport is
considered in anisotropic porous media is developed. Green’s function method is applied to obtain a moving line
source solution of the convection-dispersion-diffusion equation for solute transport in a 3-D porous medium. In
addition, Green’s function equation is analytically convoluted with a rectangular pulse function, which repre-
sents tracer injection. Secondly, the analytical model results are fitted to the tracer test data by Monte-Carlo
simulations to obtain feasible ranges of flow velocities, as well as longitudinal and transversal dispersivities.
Finally, the derived parameter values are implemented in a 3-D numerical model to evaluate the solute residence
time in a large-scale reservoir. The results applied to field data from the Kizildere field in Turkey demonstrate
that the workflow provides robust estimates of effective parameters from well-to-well data in complex reservoir
systems with anisotropic flow paths. Thus, despite the higher effort of applying convolution and stochastic
parameter estimation, the preceding analytical step of the workflow substantially eases numerical model set-up.

application scale is large and a long-time duration is needed for moni-
toring the propagation of tracers in-situ. Solute tracer breakthrough

1. Introduction

Management of subsurface reservoirs is essential for sustainable
water supply and energy provision. For the characterization of shallow
aquifers and deep reservoirs, tracer injection tests are means to inspect
fluid flow and transport properties and to understand the connectivity
between the wells for optimal reinjection strategies. In particular, in
geothermal reservoirs, tracer test analysis is important to predict the
cold-front advancement between injection and production wells and
energy depletion. Quantitative characterization of flow, transport pro-
cesses, and interpretation of tracer test data are major challenges in a
subsurface reservoir due to the limited expressiveness of geological and
geophysical data for hydraulic characterization. Moreover, the
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curves (BTC) thus reach only low concentrations, and continued
dispersion and long solute residence time cause substantial tailing of
BTCs. To deal with these challenges in the analysis, a new workflow is
presented to quantify reservoir flow parameters and to improve the
assessment of solute tailing behavior in a geothermal reservoir.

The tracer transport process can be scrutinized with computer-based
models, with which crucial reservoir parameter values are derived by
calibration with field responses. Mostly, analytical models based on
solutions of the convection-dispersion-diffusion differential equation are
employed (Bullivant and O’Sullivan, 1989; Maloszewski & Zuber, 1993;
Gerke and van Genuchten, 1996; Akin, 2001; Becker and Shapiro, 2003;
Cihan and Tyner 2011; Houseworth et al., 2013; Somogyvari and Bayer,
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Nomenclature

solute concentration (mg m’3)
injected solute concentration rate per meter (mg m~ s™1)
injected solute concentration rate (mg s
pore diameter (m)
. hydrodynamic dispersion coefficient (m=2 s1)
fracture aperture (m)
Heaviside step function (i)
line source length (m)
distribution coefficient (m> kgfl)
characteristic length (m)
average distance between two points in 3-D (m)
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P pressure (Pa)

Pe Peclet number (i)

R solute retardation factor (i)

s zero-order source or production term (mg m3sh
Uyyz flow velocity (m sH

t time (s)

T period of rectangular pulse injection (s)

T temperature (K)

v seepage velocity (m s H
VIxys  solute velocity (ms™)

XY, 2z coordinates (m)

Greek symbols

ar longitudinal dispersivity (m)
ar transverse dispersivity (m)

S Dirac delta function (i)

AP pressure difference (Pa)

Az distance difference in z direction (m)
Kx,y,z absolute permeability (m?
u dynamic viscosity (Pa s)

p bulk rock density (kg m~3)
¢ porosity (-)

Subscripts

f fracture

inj injection

m matrix

pro production

2017; Ronchetti et al., 2020; Li et al., 2021; Delbar and Chapuis, 2021).
There exists a range of different analytical models, which are used
individually or imposed into artificial neural network models (Akin,
2005; Gudmundsdottir and Horne 2020; Bodin 2020).

A common assumption for analytical models is one-dimensional (1-
D) or 2-D radial symmetry. Models in lower dimensions provide rela-
tively limited isotropic information for intricate porous and fractured
media. When tracer tests are conducted during production from large-
scale geothermal reservoirs, often multiple wells are operated during
tracer injection yielding a flow field with components of forced, non-
radial convection. For example, Gunderson et al. (2002) observed that
injected tracers flow at significantly oblique angles to the predominant
pressure gradient, indicating strong anisotropic reservoir permeability.
As an alternative to radial analytical simulation, full 3-D numerical
models can be applied at the expense of substantial computational effort
and increased data requirements (Cihan and Tyner 2011; Egert et al.,
2020; Deb et al., 2020; Wu et al., 2021). Ideally, as a suitable compro-
mise, a 3-D analytical model that accounts for anisotropic permeability
and dispersivity would be needed, while keeping the data hunger and
thus the computational effort of implementation and calibration low.
The development of such a model is the focus of this study.

Analytical solutions of the convection-dispersion-diffusion equation
can be obtained through the implementation of different mathematical
techniques such as Laplace and Fourier transforms. These are then used
to derive transport equations (e.g., van Genuchten and Alves, 1982;
Maloszewski and Zuber, 1985; Leij et al., 1993; Yadav and Roy, 2018;
Ding et al., 2021) where different methods such as the Fourier series
(Giiven et al., 1984; Bharati et al., 2019), finite integral transforms (e.g.,
Cleary and Adrian, 1973) and Green’s function method (e.g., Cole et al.,
2010; Ellsworth and Butters 1993; Leij et al., 2000; Rivera et al., 2016a;
Rivera et al., 2016b) can be applied. Particularly, Green’s function
method is appropriate to solve the transport equation with arbitrary
initial or boundary value profiles in several dimensions for irregular
geometries (Greenberg, 1971).

Sauty (1980) presented models for slug and continuous injection of
tracers in 1-D uniform and 2-D radial flow conditions in porous media.
These models can be used to analyze field data using simple curve
matching techniques. Van Genuchten & Alves (1982) are among the
pioneers who developed various pulse tracer injection models of solute
transport in porous media for convection-dispersion-diffusion processes
with Laplace transform techniques applied to semi-infinite and finite

systems (van Genuchten and Alves, 1982; van Genuchten, 1985; van
Genuchten and Dalton, 1986). Van Genuchten (1985) derived a shape
factor for rock matrix blocks for 1-D convection-dispersion transport.
Maloszewski & Zuber (1985) proposed an analytical model of tracer
injection in parallel fractures for short-term and long-term tracer ex-
periments. Bullivant & O’Sullivan (1989) developed several 1-D models
for tracer transport assuming single fracture, fracture/matrix,
dual-porosity cubes, pseudo-steady-state double-porosity, and two
fracture conditions. They concluded that the models, which allow
transient diffusion from fractures into the surrounding rock matrix (i.e.,
fracture/matrix and dual porosity cubes approaches), provide a better
match to test results than a model, which allows only longitudinal
dispersion (i.e., single fracture approach) or a pseudo-steady-state
double-porosity approach.

Cihan & Tyner (2011) presented 2-D radial analytical solutions for
tracer injection in an infinite dual-porosity medium, which were derived
for three conditions: constant injection, instantaneous release, and pulse
release. The governing equations were solved by the Laplace transform
method for solute concentration as a function of space and time. The
solutions were successfully validated with numerical simulations,
including matrix advection in longitudinal and transverse directions,
and longitudinal dispersion. Houseworth et al. (2013) proposed math-
ematical models for 2-D flow and transport through a water-saturated
single fracture and permeable rock matrix. A Laplace transform
method was used to solve these equations. The models are developed for
different flow systems as: i) 2-D flow is assumed in the matrix with an
arbitrary flow direction relative to the orientation of a fracture; ii) a
point source-release of a solute that can take place either in the matrix or
fracture; iii) independent longitudinal dispersion and diffusion which
may occur either in the fracture or matrix, respectively. A model that
considers a divergent radial advective-dispersive transport in fractures
and diffusive mass transfer in matrix blocks of rock was introduced by
Haddad et al. (2014). Their results revealed that dispersivity is inde-
pendent of the rock matrix block size distribution for
dispersion-dominated transport in the fractures. Bharati et al. (2019)
proposed a pulse-type source of an analytical solution of the
advection-dispersion equation, where spatially dependent concave and
convex dispersivity was obtained with a fractal distribution by using
Fourier series.

There exists an analytical 3-D advection-dispersion equation, which
was derived by using Green’s function method for constant flux
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boundary condition evaluated with Laplace transform (Ellsworth and
Butters, 1993). This equation accounts for anisotropic flow but neglects
dispersivity. Leij et al. (2000) introduced solutions with the Green’s
function method applied for various solute transport phenomena in
infinite, semi-infinite, and finite media. These solutions were applied for
conditions with longitudinal and transversal solute transport and a
persistent source.

In the present study, a 3-D analytical model is developed. This
analytical model can be used for anisotropic media to obtain effective
parameters from well-to-well data in particular where flow paths be-
tween injection and production wells are complex. Green’s function
method is applied in 3-D to deal with the solute transport in a medium
with a rectangular pulse injection source representative for tracer in-
jection tests. Green’s function is solved for anisotropic media by relying
on the moving line source theory (Molina et al., 2011a; 2011b). For
pulse injection, the approach involves analytical convolution between a
rectangular injection function and Green’s function of 3-D solute
transport.

Overall, this study aims to propose an advanced workflow of tracer
test analysis to characterize the conditions in a deep geothermal reser-
voir. The workflow is specifically tailored to identify anisotropic reser-
voir parameters and to inspect solute residence time distribution. In the
first step, the developed analytical model is coupled with stochastic
Monte-Carlo simulations and iteratively fitted to tracer breakthrough
data collected at the Kizildere geothermal field production wells located
in the Denizli and Aydin provinces of western Turkey at the eastern part
of Biiyitkk Menderes graben (Simsek et al., 2005). Following that, the
derived flow parameter values are used to estimate the anisotropic
permeabilities of the reservoir. In most cases, due to dispersion and
mixing in the reservoir, the measured tracer concentration in observa-
tion wells is very low. After the peak concentration arrival, it is difficult
to estimate the solute residence time distribution from the measured
solute concentration. The approach presented here thus identifies
feasible parameter ranges rather than trying to estimate deterministic
values. Moreover, in the last step, the derived anisotropic permeabilities
and dispersivities are implemented in a 3-D numerical double-porosity
simulator to set up a flexible deep geothermal reservoir model to eval-
uate the BTC tailing behavior and solute residence time in a large-scale
reservoir. The proposed workflow reduces computational expense and
time to evaluate reliable values of effective reservoir parameters.

2. Methodology

The workflow of this study is shown in Fig. 1. A conceptual
geological model based on field measurements and observations is
constructed. Then Monte-Carlo simulations are carried out with the
analytical model developed here to assess the flow and reservoir pa-
rameters by fitting the measured tracer BTCs. In the last step, the in-
jection and production rates, the injection amount of tracer, initial and
boundary conditions with the obtained parameters are implemented in a
3-D numerical model to create a local geothermal reservoir model of the
Kizildere field to assess BTC tailing and correspondingly the solute
residence time distribution.

2.1. Analytical model

For simulation, we first consider a continuous medium. This serves as
a basis for the description of transport in porous media and, subse-
quently, also upscaled conditions in fractured reservoirs. The governing
partial differential equation (PDE) of the solute convection-dispersion-
diffusion in 3-D cartesian coordinates in porous media is given as:
oc oc dc &c oc oc dc
RE = (Dkﬁ +Dya—y2+ Za_ZZ) — e u).a—y - uZa—Z +s m

in which t is time, ¢ is the solute concentration, R is the solute
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Field data Tracer modeling
Geophysical measurements —-‘ Conceplual geological model
Geologic observations 'L

Algorithm for Monte-Carlo
simulations and fitting with
ASMLS model (Eq. 23)
Obtaining flow parameters
and anisotropic permeabiities

Y

Numerical model setup

Initial and boundary conditions
Transformation process of
tracer injection in the TOUGH2
proposed by Tomasdattir (2018)
Specifying parameter values
into a 3-D numerical model

to assess the solule residence
time distribution where

the measured solute
concentration is low due to
dispersion and mixing

Tracer measurements
Arrival limes =

Tracer test
Injection and production rates >
Injected amount of tracer

Fig. 1. Workflow of multi-well tracer test analysis conducted in a
geothermal reservoir.

retardation factor, Dy, y, , are hydrodynamic dispersion coefficients, uy,
uy and u; are flow velocities along the x-, y-, and z-directions, and s is the
production term. The solute retardation can be estimated as:

K
R=1+p= 2
P¢ (2

where p is bulk rock density, K is the distribution coefficient and ¢ is the
porosity of the porous or fractured medium. Hydrodynamic dispersion
coefficients are calculated based on longitudinal a; and transverse ar
dispersivities that are defined in x-, y-, and z-directions as follows:

Dx:D0+aLux'-,Dy:D0+aTuy;Dz :D0+aTuz (3)

in which Dy is the molecular diffusion coefficient. The dispersivities
depend on the velocity field. The x-direction is considered longitudinal,
and y- and z-directions are transversal. The diffusion coefficient for an
injected liquid tracer at different temperatures can be defined using the
Stokes-Einstein equation. The diffusion coefficient of a tracer in a
reservoir thus is estimated as:

HryTo

Dr, =D
& n wr, T

4

where T; and T are injection and reservoir temperatures, respectively.
Dr; is the diffusion coefficient of a tracer at the injection temperature,
pr1 and pro are the dynamic viscosity coefficients corresponding to the
respective temperatures.

Leij et al. (2000) provide the application of Green’s function method
on the governing solute convection-dispersion equation (Eq. (1)).
Green'’s function method provides the relationship between a line inte-
gral around a closed curve and a triple integral over the plane region (x,
¥, 2). The corresponding 3-D problem can be expressed in terms of the
differential operator ¥ as:
u,dc s

- 3

¥le) Rox Rdy Roz R

LG (DoFe D Fe DF wie wic
ot R 0x> R 0> R 07

By multiplying Green’s function Gf, an alternative adjoint problem
can be obtained:
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where Bc-terms denotes the boundary terms. Then, the differential
operator ¥* given in Eq. (6) can be defined as:

" (DX & c D, dc D, 6zc> u, 0c  uy Oc  u, oc 0
V=—Adoomtosmtsm) 55 %37 57 o (7)
R 0x* R dy* R 072 Ro’ RO RO or
The integral variables (x’, y’, 2’, 7) correspond to coordinate vari-
ables and time ¢ (x, y, 2, t). The differential operator given in Eq. (7) is
similar to the partial differential equation (PDE) provided in Eq. (1)
excluding the negative time and the velocity vectors. A solution for
tracer concentration ¢ can be obtained from the equivalent problem
through the adjoint operator. Green’s function method uses the Dirac
delta function § (an impulse spike function), which is applicable for
instantaneous tracer injection. The differential operator on the Green’s
function Gy is equal to a four-dimensional Dirac delta function given as
follows:

Y(Gf) =d(x—x,y—Y,2—2,t—1) = 8(x—x)8(y—y)d(z—2 )5t — 1)
8

The Green’s function Gf (x, y, 2, t x’, y’, 2’, 7) indicates the con-
centration at (X, Y, 2, t) as a result of an instant solute release at the time ¢
for a unit source located at (x’, y’, 2"). The full expression of the equation
solved for an infinite spatial domain can be found in Leij et al. (2000)
where the basis of a wide variety of analytical models in multiple di-
mensions is provided. When solving the equation, the production term s
is assumed as zero in most of the cases.

Green’s function Gfis defined as the sum of the fundamental solution
F according to the superposition principle. The fundamental solution F
can be derived by solving Eq. (8) with Fourier transformation and then
by solving the initial value problems for an instantaneous point source
that result in an analytical expression. The fundamental solution F can
be defined as:

Fx,y,z,6x,Y,2,7) = F(x, ;X , 0)F,(0. ;¥ , 7)F.(2, ;2 ,7) 9

Solving the fundamental formulation of the PDE given in Eq. (1), the
Green'’s function Gf of a pulse point source can be obtained at the given
point coordinates (x’, y’, z’) and time t = 0. Moreover, applying the
moving source theory for the x-, y-, and z-directions with constant drifts
(Carslaw and Jaeger, 1959), the fundamental equation can be written as:
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geometric factors of the flow channels can be formulated. It is assumed
that a conservative tracer flows with the same velocity as bulk fluid flow.
The characteristic length can be calculated as L = r / Sf, where Sf is the
specific surface area. Sf is the ratio between the cross-section area over a
volume of the geometric shape of a spherical pore or for simplicity a
cylinder-shaped fracture defined with Sf = A / V. The Peclet number can
be defined as Peyy,, = uy,y,; L / Do, or for fracture flow Peyy, = tyy  h /
Dy, where h is the fracture aperture.

From this point, the given solution function in Eq. (10) can be inte-
grated along the vertical z-direction for a finite line source length H with
a pulse of solute injection, where a point source is superpositioned. The
solution is expressed as:

c H
F :7"1 / exp (
D.D,D, (%) 0

(Ry—y)—vp1)*
4tD,R

(R(x—x ) —vre1)?
4tD,.R

Vil (v RE=2)’)
4D.R" 2D, 41D, '

12)

where C, is solute tracer concentration rate input.
The integration part over the line source length H in Eq. (10) can be
simplified by using the substitution method:

(R(x—x') — vrxl)2 _ (R(y - y/) - VT.V’)2
4tDR 4tDyR

G

=exp ( —
D.D,D, (4—1’;’)
[ Vi (22 RE -2\
X /exp(—m-‘r 2D. - 2. )dz
(13)

To satisfy the boundary conditions of the domain, the method of
images theory is applied on the moving source part in the z-direction
(Bear, 1979), where the source is represented as a line. The substitution
part can be represented as:

F=

Rz—7) R(z—7
2 =Re=2) HV:\/_(z z) (14)
4Dt Nzox:
4D, /
— _R‘ td(ﬂ =dz (15)

10

Ry =) — v (1= 1))’ it=7)  z—Zve RE -2)°

4D.R(t — 1)

(R(x— x,) —vr(t — T))2
XExp < - 4D,R(1 —1) 4D.R

where H is the Heaviside step function, vy, v1y, and vy, are the solute
velocities, which yield the flow velocity vector:

Pex,y,zDO _ ux<,\‘.zL DO

VIey: =
Txy,2 d Do Pl
ey

1D

where L is the characteristic length, d is the pore diameter. Eq. (11) is
typically defined for porous media. To depict a model from a continuum
approach to the fractured medium, a Peclet number based on the

2D,  4AD.(i— T)>

Integral limits of the ¢-value from z — H to 2z and from z to z + H are
defined to satisfy the boundaries concerning the method of images:
z z+H

z—-H z
@
[ fana fapa e
R R R R

Substituting the conditions Eq. (16) and Eq. (15) into Eq. (13), the
solution can be rewritten as:

(16

andg :
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The integration of exponential function f = exp(-w?) is expressed
with the error function defined as:

erf(x) / exp(— da)—>£erf( ) = / exp(—0”)dw (18)
RV 0
After simplification, Eq. (17) reduces to:
P CLR ex (R(x—x) —vput)? B (ROy—y) —vpt )2
821 /D.D, P 4D,R 41D,R
R(H — Z) + tvr, tvy. — Rz
AN : 1
) (”f ( HD.R ) ! ( VADR >> 19

Cy is still a Heaviside step function where Cr(t) = 1, for t > 0. If Cy is
superimposed per meter depth for a given time, the input rectangular
pulse injection function can be analytically convoluted by shifting over
the convection-dispersion-diffusion part of Eq. (19) (impulse response)
with a given time interval At. Details of this technique for heat transfer
are described elsewhere (Erol et al., 2015). Here, it is assumed that the
solute concentration rate Cp is injected at a constant rate per meter
depth, which can be estimated by dividing the total injection rate of the
solute by the total length of the line source, H.

Eq. (19) is segregated into two parts: c; represents a rectangular
pulse function, and the convection-dispersion-diffusion part is expressed
as an impulse response function I (x, y, 2, t). Hence, the following
equation can be obtained:

(R(x—x) —vpa)*
4tD.R

R
c(x,v,2,t) = ¢ ex
ey at) = a5 p(

) (o) i)
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tracer concentration rate per meter depth.
The convolution of the function I and c; can be formulated as:

o T
c(x,y,z,1) = / cr()(x,y,z,t — 1)dt—>cp, /](x,y,z,t— 7)drt (22)
— 0

This convolution integral equation can be solved by discretizing both
the ¢y and I function with a differential interval of At. The sum of impulse
responses at given coordinates (x, y, z) provides the convolution in
analytical form and can be written as:

= cu(iAnI(x,y,z,1 — iAt)At
i=0

c(x,,2,1) (23)

where i At denote the time interval of each unit impulse (i.e., time
delay), n is the time span, and the delayed and shifted impulse response
is expressed as ¢y (i At) I(t - i At) At. For instance, the total amount of
injected tracer is 200 kg (2 x 10® mg), which is divided by the assumed
line source length (e.g., 150 m). If the time interval is At =1 h, then 2 x
108 mg / H is injected per hour. The output concentration is given in mg
m~3. The coordinates x, y, z as given in Eq. (20) correspond to the dis-
tance difference between the injection and arbitrary observation points
(Ax, Ay, Az). The convolution and the line source are illustrated in
Fig. 2. The proposed analytical model (Eq. (23)) is called Anisotropic
Solute Moving Line Source (ASMLS).
The permeability is estimated according to Darcy’s law in 3-D as:

(20)

To apply a pulse injection for a specific time frame, the boundary
conditions can be defined as follows:

() = {chort € 1[0,T]

0, otherwise e

in which T is the period of rectangular pulse injection, c; is the injected

a b)
_T !
1 7=
,J. 1400+
|
i Injection lne source
08 it 1600 J
p!
= ¢!
=] it =-1800 4
8% b £
g il N -2000 |
w i i
0.4 ' -
: : 2200 4 Obserdation
[} ]
02 ?’ : 2400
o e 0l T S
Qh=s® — 1000 e 1000
0 2 4 6 # 10 2000
3 x(m) yim)

Fig. 2. a) Illustration of analytical convolution between impulse response and a
rectangular function with a time interval At. b) Line source for injection of a
tracer and the distance to an observation well in a three-dimensional plane.

1(x.y,z2.0)

U pAx
AP
uyp Ay
Ky = — }AP
_ugpAz
AP

Ky = —

(24)

where yu is the dynamic viscosity, and AP is the pressure difference be-
tween injection and production wells under steady-state conditions. For
the subsequent demonstration, the developed analytical model is
implemented in MATLAB version 2019a (MATLAB, 2021).

2.2. Models used for comparison and verification

The ASMLS model is compared with four different solutions where
different flow conditions are implemented. As the first one, a slug tracer
injection model by Sauty (1980) considering advective-dispersive
transfer is adopted. This model considers longitudinal and transversal
effects of a tracer propagating in a 2-D uniform flow regime. At a given
distance from the injection position, the evolution of concentration can
be estimated by:
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¢, = a(V(@®+4) —-2) exp
ut

4(/(@+4) -2)

2
(o)
- (25)

Aut
ar

(”2 (V@) - 2)2)} exp

where u is the uniform flow velocity, and a is given as:

22
a=\|—~

5 (26)
a2 aar

Bullivant & O’Sullivan (1989) provided several 1-D models for
porous and fractured media. Here, two of their models are considered;
single fracture and fracture-matrix models. The assumption of the single
fracture solution is based on a single flow path where tracer flows within
no-slip boundary conditions at the walls of the fracture. The single
fracture solution is given as:

m  2t, [w w(t—tn)’
PPNy T B Gt 1O 27
TN mmeXp< 4 1t @7

where m is the total amount of injected tracer, Q is the mass flow rate, t,,
= Lqgy / uand w = uLgy / D1 Ly, is the average distance between two
points (in this case in 3-D, x, y, 2). Dy, is the Taylor dispersion coefficient
given as:

2/ h\*1
= (ul) = 2
D 105(“2> Do (28)

In the fracture-matrix model, a large fracture surrounded by rock
matrix blocks with micro-fractures is considered. The longitudinal
dispersion is ignored to distinguish this model from the single fracture
model. The concentration in the observation well can be estimated as:

Im

() o

(29)

¢m is matrix porosity. H(t - t) is the Heaviside step function.

Welty & Gelhar (1994) proposed four approximate analytical solu-
tions for tracer test analysis. Three solutions developed by Welty &
Gelhar (1994) for radial flow and two-well tracer tests do not take into
account the flow velocity in the field and require the travel time of the
tracer as an input. Only one of the solutions addresses non-uniform flow
effects to determine longitudinal dispersivity from tracer tests in aqui-
fers. This solution relies on the variable-velocity conditions of a steady
non-uniform flow field and conserves the total mass of the tracer in a
stream tube. The equation derived for a pulse input of a tracer mass is
given as:

m, n”
Cue = ’ — 30
e pv(xo)VamaLw xp { 4aLa)} (30)

Cwg is the mass fraction of the tracer, mj, is the mass of injected tracer
per unit cross-sectional area of aquifer, p; is the density of tracer solu-
tion, v is the seepage velocity, x is the location, w and 5 are the integrals
that account for the variable dispersion effect as a result of the changing
velocity field. The integrals @ and 7 are defined as:

o= [—as 3D
/()
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X is the mean location of the pulse front.

[
0

As the fifth model used for comparison in the study, a convection-
dispersion model by Houseworth et al. (2013) was chosen, which in-
cludes variable diffusion and dispersion between matrix and fracture for
solute tracer transport:

_ C = ust — Z) <umt - Z)]
Cy = VD — 33
" VarDt ” {erf (2\/51 ef 2V Dt 33)

urand uy, are the flow velocities in fracture and matrix, respectively, and
Cn, = 1. The parameter z can also be specified as the average distance.
The time-averaged longitudinal diffusion/dispersion coefficient is:

1
D=- (D;iJrD; (,,i)) (34)
t Uy Uy

in which Df* = D; / Ry and Dy* = Dy / R Dy is the longitudinal
dispersion coefficient, Rrand Ry, are retardation factors for fracture and
matrix, respectively.

2.3. Monte-Carlo simulations

In the workflow, we apply the ASMLS model in an exhaustive Monte-
Carlo analysis to identify feasible ranges and distributions of anisotropic
flow velocities (x, y, 2), longitudinal and transversal dispersivities. In
this analysis, a sufficiently large number of uncertain model parameter
values is randomly generated by sampling from predefined distribu-
tions. Each sample simulation is tested by computing a square error
function to quantify the fitness between the calculated and measured
tracer BTCs. Feasible parameter ranges are identified by selecting a set of
best-fit results.

In the Monte-Carlo simulations, triangular distributions are assumed
in curve analysis, which is a straightforward procedure and nearly ap-
proximates a lognormal distribution of a BTC obtained from the tracer
test. This is because the triangular distribution provides a continuous
and bounded probability in a triangular area providing lower-upper
limits and a most likely value such as a lognormal distribution. We
defined a triangular probability distribution function as:

Pi(i) = Pj_min + X(Pj,max - Pj,min) (35)

P is the value of the desired parameter for estimation, bounded with
upper and lower limits; X is the random variable that generates random
numbers for each iteration within the range 0 < X < 1. The subscript j
denotes the parameter, i is the number of realization. The square error
function is defined as (Wu et al., 2021):
2 2
)]
tmwl

1 ¢ 2 t, 2 t
= L[ ) (Y (2
é‘e Cmen,peak tmea,peak Imea_1
(36)

the subscript i denotes the Monte-Carlo simulation results, mea the
measured data, peak the maximum value of the concentration. The
corresponding arrival time is tyeq; t; and t; are the beginning and the
end of the BTC, respectively. For each realization, we found the begin-
ning and the peak of the BTC. The beginning and the end of the curve are
determined in an iterative process. In the first step, a threshold value is
set (e.g., 0.1) and concentrations larger than the threshold value are
determined. In the second step, the large value differences along the
dataset array are evaluated with a special function in MATLAB, diff(c),
and the indices of the high difference points on the curve are found as
the beginning and the end of the curves. In our application, the end
value of the BTC is ignored since the measured tracer data is not (fully)
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Fig. 3. a) Geological settings of the segmented geothermal reservoir of Kizildere. The surface highlighted in red color defines the lower boundary of the shallow
reservoir. b) Illustration of the injection (blue) and production (red) wells intersecting fault-2. Tracer is injected into Well-Ki; and Well-L;;; and monitored at the

production wells (Well-Apro, -Bpro, -Cpro, and -Hpyo).

available after the peak concentration. There are two major reasons to
stop the measurement in the field after the peak arrival time: (i) the
concentration that is arrived at some observation wells is low and
further concentration recordings are increasingly influenced by disper-
sion; (ii) the peak arrival time reaches more than a year which is
considered a sufficiently long duration for the tracer measurements in
the field.

&, is the standard error of the mean that can be estimated as:

¢

ge:—

N 37)

£ is the standard deviation of the measurement dataset in dimensionless
form (c/cmax) and N is the number of measured data.

2.4. Geological settings of case study and field tracer test

The advantages and disadvantages of the ASMLS model are
demonstrated with a field tracer test conducted in the Kizildere
geothermal field, Turkey. The Kizildere field is bounded by oblique-slip
normal faults with various orientations, and more than 80 wells are
actively operated. Therefore, managing and ideally avoiding thermal
interference and pressure depletion between adjacent wells is of high
importance to ensure productivity and long-term sustainability. This
study only focuses on a part of the geothermal field where the injection
and production activities are intensive. That is why it is of major interest
to inspect the existence and relevance of hydraulic connectivity between
densely positioned wells. The geological model of the Kizildere
geothermal field was constructed based on information gathered from
geophysical surveys and borehole data obtained from the wells. Four
major faults create a combination of sinks and sources between shallow
and deep hydrothermal reservoirs in the region of interest (Fig. 3a). This
combination results in various 3-D flow paths in different directions and
complicates the estimation of representative reservoir parameters. As
shown in Fig. 3b, some of the production and injection wells intersect a
single fault zone (Fault-2) where two previous tracer injection tests were
performed to explore the connectivity (Akin et al., 2016). The injection
was carried out at the shallow wells and monitored from the deeper
production wells along the Fault-2. These tracer surveys are suitable to

Table 1

Cartesian coordinates of wells where the Fault-2 is approximately intersected,
and mean distances from tracer injection wells to the monitoring production
wells. The coordinates are based on Fig. 3b.

Well Coordinates (m) Mean distance to Mean distance to
ID Well-Kip;, Lg, (m) Well-Lipi, Loy (m)
x (m) y (m) 2 (m) 1nj. av 'nj. ‘av
Well- 750 1140 750
Kinj
Well- 1810 700 1320
Linj
Well- 800 730 1500 880 1025
Apro
Well- 735 210 2455 1820 1690
Bpro
Well- 500 285 2310 1960 1660
Cpro
Well- 800 550 1750 1270 1150
Hpro
Table 2
Parameter range settings for global sensitivity analysis.
parameter  u, (ms ~ 1) uy, (ms "~ D) uw, (ms Y ar, ar (m)
(m)
range 1x107-1 1x107°-1 1x107°-1 1- 0.1-
x 1073 x 1073 x 1073 600 250

The number of Monte-Carlo realization points: 50,000.

examine the ASMLS model. For our study, the four production wells
located closely to the injection wells were considered.

There are several types of tracer compounds such as traditional
tracers like salts (Day 1977; Lei et al., 2010) and dyes (Abrahams et al.,
1986; Flury and Wai, 2003), reactive tracers (Leecaster et al., 2012),
DNA-tracers (Kong et al. (2018) and thermally sensitive tracers (Haw-
kins et al., 2017). Often, thermally sensitive tracers such as naphthalene
sulfonates, Amino G, and rhodamine WT were applied to evaluate the
thermal state of a geothermal system (Rose and Clausen, 2014; 2017).
Two types of naphthalene sulfonate compounds, whose thermal decay
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Table 3
Parameter range settings for local sensitivity analysis following a one-at-a-time
principle.

Interested U, (ms "~ 1) uy, (ms— 1) u, (ms~ 1) a, (m) ar (m)
parameter
Uy 1x107- 1x107°- 1x107°- 200 - 75 -
1x10°3 1x107° 1x107° 300 100
uy 1x107°- 1x107- 1x10°-  200-  75-
1x1073 1x107° 1x107° 300 100
u, 1x107°- 1x107°- 1x107- 200 - 75 -
1x1073 1x107° 1x107° 300 100
a, 1x107°- 1x107°- 1x107°- 1-600 75-
1x1073 1x107° 1x107* 100
ar 1x107°- 1x107°- 1x107°- 200 - 0.01 -
1x1073 1x107° 1x 1074 300 250

The number of Monte-Carlo realization points for each parameter: 5000.

kinetics are suitable for use in reservoirs with temperatures up to 300 °C
(Rose et al., 2001, 2002), are used as tracers at Kizildere. The reservoir
temperature is as high as 242 °C at around 2000 m depth (Simsek,
2003). The tracer compounds, with a mass of 200 kg of 1-naphthalene
sulfonate, and the same amount of 1,6-naphthalene disulfonate were
separately mixed with the effluent fluid and injected in the injection
wells Well-Kj,; and Well-Liyj, respectively. Both of the tracer injections
were completed in less than an hour. In the analytical model, the line
source length H is specified based on the well screen of each injection
well and it is assumed that the tracer is uniformly injected along with the
fully penetrated well screen. For instance, the total amount of tracer
injected in one hour into Well-Kjy; was 200 kg. This amount is simply
divided by the well screen of Well-Kj,j as 150 m, which means that ¢,
must be specified as 1.33 x 10° mg m~! h™! in the analytical model
depending on the time interval in the convolution (i.e., 370 mgm ~'s ~
b. Similarly, the well screen of Well-Kjy; is 400 m long. The coordinates
and the average distances between injection and production wells that
were used in calculations are given in Table 1.

In the ASMLS model, there are five unknown parameters (flow ve-
locities in x-, y-, z-directions, and dispersivities) to assess with Monte-
Carlo simulations. Firstly, we applied global sensitivity analysis with
50,000 realizations to determine the average ranges of each parameter.

N

30 m of depth ,ﬁ@iﬂ’/
m of dep!
>

Shallow caprock 1
Shallow reservoir lE%:
Deep caprock

Fault-4

Deep reservoir

3850 m of depth
Fault-3

Fault-2
Fault-1

Well-B,,
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Then, in 5000 realizations, the sensitivity of each parameter was tested
following a one-at-a-time principle: the value limits of the concerned
parameter were set in a wide range, while those of the other parameters
were kept narrow. For instance, the flow velocity in x-direction was
analyzed within the limits from 1 x 1077 to 1 x 10~ m s~!, while for
other parameters such as longitudinal dispersivity a tight limit of 200 to
300 m was set, and the other velocities are bounded between 1 x 10°
and 1 x 107> m s~ L. The range of the parameters and settings for global
sensitivity and the local sensitivity analysis are given in Tables 2 and 3.

The calculation with all 5000 realizations in MATLAB took a
computational time of 50 min (Hardware specifications: Intel Core
i7—9750H CPU @ 2.60 GHz processor with 16 GB of RAM). The ASMLS
model was derived based on the convolution approach in which the
impulse of injection is considered with implicit time steps. Therefore,
the runtime of each realization is longer compared to applying analytical
solutions without convolution.

2.5. Numerical model

The numerical model is employed after the analytical analysis to
examine the solute residence time distribution in greater detail that is
affected by dispersion in a large-scale geothermal reservoir. A 3-D local
numerical model is constructed based on the previously prepared
geological model (Fig. 3a). In addition to the six wells depicted in
Fig. 3b, the neighbor injection and production wells where the tracer
test was conducted are also included in the numerical model (Fig. 4b).
Heat and mass fluxes obtained from a full field model and affected by
wells outside of this local model are implemented at the boundary cells
(Erol et al., 2022). For this, the EOS1 flow module of the numerical
modeling platform TOUGH2 (2021) is used, which couples flow and
solute tracer transport in a non-isothermal system. A fixed-state
boundary condition is defined at the top of the model. The model is
run until the pressure (P) and temperature (T) gradients have reached
the natural state conditions of the field (e.g., over 100,000 years) and
fitted to static measurements obtained from the wells as a function of
depth. The preconditioned bi-conjugate gradient is selected as solver
and the maximum relative error criterion is set to 1 x 10~7. A mesh with
39,375 regular grid blocks is generated (Fig. 4a), which allows

Well-H,o
Well-G,

i)
Well-D,,

Well-E \

Well-Ayo Well-J,,y

Well-K;,, (Tracer injection)

Well-L, (Tracer injection)

— Fauli-2

Fig. 4. The numerical model setup. a) Illustration of the grid and geological settings. b) The well locations and flow paths are depicted in different colors. Subscript

pro represents production, and inj describes injection.
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specifying permeability in three directions (x, y, z), which is more
flexible than for example Voronoi grids (x, y = z). The discretized block
area is 1600 m? near the wells and expands to 6000 m? towards the
boundaries. The model is subdivided into 25 layers with variable
thicknesses ranging from 40 m to 170 m. Flow paths are created between
the wells as shown in Fig. 4b. The matrix permeability in each direction
is defined as nearly impermeable as 1 x 10~'® m? with a matrix porosity
of 0.04. The effective fracture permeability values in x-, y-, z-directions
are calibrated and specified based on the velocity field determined from
the tracer data-ASMLS model matches.

The multiple interacting continua (MINC) method, which is an
improved technique of the dual-porosity model described by Warren &
Root (1963), was used for the simulations (Pruess, 1992). For example,
Fayer et al. (2009) assessed thermally degrading tracers in injection tests
with the MINC method implemented in the TOUGH2 simulator. In the
ASMLS model, dispersivities a; and ar can be obtained by matching
field-measured concentrations, but these parameters are not recognized
in the TOUGH2 simulator. Therefore, the obtained dispersivities are
defined as matrix block sizes in TOUGH2. The longitudinal one in the
x-direction and transverse one in y- and z-directions are specified
accordingly. The dispersivity does not perfectly correspond to the matrix
block scale, but this assumption is expected to alleviate matching be-
tween tracer measurements and numerical results. In the following, it is
tested whether the numerical dispersion in the TOUGH2 simulator with
the MINC approach is suitable to represent the macro-dispersion char-
acterized by the ASMLS model while examining the BTC tailing behavior
of the tracer and its residence time distribution.

Here, we assume an equivalent permeability approach for the frac-
tured medium in the ASMLS model. In dual-porosity systems, it is
assumed that the fluid flow from the matrix to fractures is in a steady-
state condition (Warren and Root 1963). As time goes to infinity, at
the end of the flow path both in fracture and matrix, the pressure drops
must be identical. Therefore, the fluid flow velocity either in a porous
medium or in the fractured medium can be assumed the same. Firstly,
the flow velocities are determined with the new analytical model fitting
to the tracer data. Following that, the flow velocity is used to estimate
the porous permeability with Darcy’s law given the pressure difference
between the considered wells. Subsequently, this permeability is
assumed equivalent to fracture permeability. Thus, the cubic law is
applied to estimate the fracture aperture (the porous permeability with
Darcy’s law = fracture permeability kr = h®/12 according to the cubic
law). The convection-dispersion-diffusion was assumed to be valid,
disregarding some other approaches, which consider more complex
transport phenomena in fractured media controlled by fracture
geometrical properties, including tortuosity, fracture roughness, and
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Fig. 5. Monte-Carlo simulation results of the tracer transport (Well-Apy,). The
misfit function Ry is plotted as a function of flow velocity in x- and y-directions
(a and b), longitudinal and transversal dispersivities (c and d). Each point
represents a realization. Tracer was injected into Well-Kjy;.
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connectivity.

A sudden pulse tracer injection within a short period (i.e., 200 kg in
15 min) causes convergence problems in TOUGH2, even if the relative
tolerance and time step are set to considerably small values (specified
time step such as 1 s and relative tolerance of 1 x 1077). Recently,
Tomasdottir (2018) proposed a transformation method that could be
used to tackle convergence issues in TOUGH2. According to this
approach, the specified tracer injection rate is multiplied with injection
time, and the real amount of the tracer injected in the field is divided by
the total tracer amount defined in TOUGHZ2. This ratio is multiplied by
the mass fraction of the tracer and the flow rate at the well grids. Using
this method, the tracer injection rate in TOUGH2 is specified as 30 kg s ~
! injected in 7000 s (7000 s x 30 kg/s = 2.1 x 10° kg injected in the
numerical model, 200 kg real tracer / 2.1 x 10° kg - 1 = 9.5238 x
10™%). In the numerical model, the calculated tracer mass fraction, VA
and production flow rate in the intersected grid, Q, is multiplied with the
scaling parameter A to tackle convergence issues due to a large mass of
tracer. If the production well intersects multiple grids, the observed
tracer concentration can be calculated as ¢ =1 Y yiQ; / > Q;, where i
denotes the number of intersected grids.

3. Results

In the workflow, we first apply Monte-Carlo simulations with the
ASMLS model to determine values for the unknown parameters in the
form of distributions. The concentrations are calculated at the point
coordinates nearest to the observation well where Fault-2 is intersected
(Fig. 3). Fig. 5 shows the scatter plots between parameters and the total
misfit of a tracer concentration measurement at the observation Well-
Apro. The scatter plot of the parameters uy and o, cover a broad range
whereas the feasibility range of u, and ar are evaluated at a more
optimal point. The reason is that Fault-2, where the fluid flow is domi-
nant, intersects Well-Kj,; and Well-A,, in the aligned y-axis. The
transversal ar and longitudinal dispersivity oy are at a clearer feasibility
range on the misfit function R due to the dominant vertical flow di-
rections uy, and u, and the vertical heterogeneity. In other wells, we
observed similar outputs in that the flow directions of the injection and
observation wells are aligned on the vertical axis resulting in the total
misfit at a clearer range for the flow velocity u, and u,.

The ASMLS model results are compared with other approximate
solutions by fitting each model with the tracer data injected into Well-
Kinj and measured at Well-Ap,. The results are plotted in a dimensionless
form in Fig. 6. The estimated values of the parameters obtained from the
fits for the case where the tracer was injected in Well-K;,; and monitored

ik —Eg. 23 (ASMLS)
@ Measurement
-=~Uniform porous - Sauty (1980)
o —Single fracture - Bullivant & Sul.(1989)
8 Fracture-matrix - Bullivant & Sul. (1989)
——Fracture-matrix - Housewarth et al. (2013)
x - —+—Welly & Gelhar (1994)
f.!t '
G
04+ 1
0.2+
O o

0 200 400 600 goo 1000
time {days)

Fig. 6. Analytical models are fitted to measured tracer data (Well-Ap;,). The
models used are the ASMLS model (Eq. (23)); the uniform porous medium
model, Eq. (25) (Sauty, 1980); the single fracture and fracture-matrix models,
Eq. (27) - Eq. (29) (Bullivant and O’Sullivan, 1989); non-uniform flow model
Eq. (30) (Welty and Gelhar 1994); and the fracture-matrix model Eq. (33)
(Houseworth et al., 2013). Tracer is injected into Well-Kiy;.
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Table 4

Comparison of parameters obtained by simulating tracer test data in different analytical models.
Analytical models ¢ @D h(m)® u(ms 1) Peclet number ¢ a (m)

Uy u, Uy Pe, Pey Pe, ag ar

ASMLS model, Eq. (23) #5~0.025 1x10*  4x10% 3x10° 6x10° 13 1.3 21 260  a x 0.4
Sauty (1980) — uniform porous model, Eq. (25) - - 5.5 x 107° Pe; = 0.4; Per =9 150 ap x 0.2
Bullivant & O’Sullivan (1989) — Single fracture, Eq. (27) - 3x10°2 3.5x%x 107° Pe =100 - -
Bullivant & O’Sullivan (1989) - fracture-matrix, Eq. (29) ¢m = 0.005 3x1073 7 x107° Pe = 150 - -
Welty & Gelhar (1994), Eq. (30) $m = 0.025 - v=u/¢n=0012u=3x10"* - 10* -
Houseworth et al. (2013) —fracture-matrix, Eq. (33) - 2x 107 ur =44 x10 S Uum=4x10"° Pef=9 Pe,, = 8 - -

2 Fracture porosity value was taken fromChilingarian et al. (1992) according to the fracture aperture. ® Fracture aperture was determined based on the cubic law (see
Section 2.5). ¢ Pe, = Ax / ay, Per = Ay / (ay, ap)” /2, Ax = 62 m, Ay = 607 m. Pes = ush / Do, Pef = upd / Do, Dg =1 x 10 " m*s ~ ..

Table 5

Parameter values were obtained by matching tracer measurements between Well-K;,; and the production wells with the ASMLS model.
From Well-Kiy; to other wells Az (m) AP * (MPa) R () u(ms 1 x (m?)® a (m)

Uy uy, Uy, Ky Ky Kz ar ar

Well-Apro 750 7 165 4x107* 3x10°° 6x10° 6x10" 4x10"¥ 13x10" 260 a x04
Well-Hpy, 1000 8 1.2 4x107* 2x10°° 6x10° 2x10®  3x10¥®  12x10'2 260 a; x 0.4
Well-Cpro 1500 10 1.2 1.3x107%  2x107* 4%x10° 6x10% 3x10'* 1x107'? 260  ay x 0.4
Well-Bpro 1600 11 1.2 4x107* 65x10° 6x10° 9x10® 1x10'? 13x102 260 o x0.4

2 Values are obtained from the TOUGH2 numerical model after the hydraulic regime has reached steady-state conditions. y = 0.16 x 107> at temperature of 230 °C. ®
Absolute permeability calculated with Eq. (24) with the flow velocities. The permeability values were transferred to the TOUGH2 simulator as fracture permeability

approximated using the cubic law.
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Fig. 7. Match between the ASMLS model response (Eq. (23)) and tracer mea-
surements and comparison with the numerical model results. The parameters
specified in the numerical model are listed in Table 5. Tracer is injected into
Well-ij.

at Well-Ap,, are given in Table 4. The advantages and disadvantages of
the analytical models are discussed in Section 4. According toChi-
lingarian et al. (1992), fracture porosity typically ranges from 0.1% to
3% and they demonstrate a correlation between fracture aperture and
fracture porosity. Based on this correlation, we determined the fracture
porosity corresponding to the fracture aperture that is evaluated from
the cubic law. The fitted models fairly match the field data except for the
fracture-matrix model given by Eq. (29) (Fig. 6). The fracture aperture
and flow velocity are specified similarly both in the single fracture and
fracture-matrix models of Bullivant & O’Sullivan (1989) as shown in
Table 4. However, as dispersion is neglected in Eq. (29), the
fracture-matrix model shows a sharper peak around the mean arrival
time of the tracer compared to the single-matrix model. Instead, the
matrix porosity affects the result in this fracture-matrix model. Larger
matrix porosity delays the mean arrival time and shifts the tracer con-
centration over a longer period, whereas smaller matrix porosity causes
sudden breakthrough behavior without dispersion but facilitates fitting
the mean arrival time.

For further analysis, the analytical ASMLS model is coupled with

10

Monte-Carlo simulations to fit the measured tracer data monitored in
other observation wells in the reservoir shown in Fig. 3b. Eq. (23) is
calibrated for each injection and observation well couple separately (e.
g., Well-Kijpj to -Apr, Well-Kjyj to -Byro, etc.). Results are reported in
Table 5 and the fits are depicted in Fig. 7. Flow velocities are mainly
stimulated by the forced convection between the injection and produc-
tion (tracer observation) wells. The flow velocity in the x-direction is
one order of magnitude faster compared to y- and z-directions, but the
observation wells are located in y- and z-axes directions where the ve-
locity is slower. In contrast, we found that absolute permeability is
larger in the z-axis direction. The reason is that the pressure gradient is
small (i.e., low-pressure gradient). Longitudinal dispersivity value of
260 m with a field-scale of around 2500 m is in accord with the ranges
reported by Gelhar et al. (1992) and Neuman (1990) (e.g., a = 10% to
10% m for scales ranging from 10° to 10* m).

During the Monte-Carlo application of the ASMLS model, the feasible
range is obtained with a transversal dispersivity that is around 0.4 times
smaller than the longitudinal dispersivity. According to Gelhar et al.
(1992), vertical transverse dispersivity is typically an order of magni-
tude smaller than longitudinal dispersivity, which however may differ
among different field sites. The reason can be attributed to the fractured
medium and the oblique-slip fault orientations which are perpendicular
to the surface with the dip angle around 45°.

The parameters given in Table 5 are derived with Monte-Carlo
simulations by matching the ASMSL model to field data. The obtained
values are assigned in the 3-D numerical TOUGH2 model for simulating
flow and transport (Fig. 4b) to examine the residence time distribution
and to check the consistency of the ASMLS model. The permeability is
estimated with Darcy’s law based on the evaluated flow velocities. Based
on this, the permeability of the porous medium is assumed equivalent to
fracture permeability xf = h®/12 according to the cubic law.

As depicted in Fig. 7, the tracer is injected into Well-Kj; located at
the northern part of the model. The first and mean arrival times of the
numerical results match well with the measured data at the production
wells, but the simulation roughly overestimates the tracer amount after
the mean arrival time. The dispersion in the numerical model is stronger
due to the matrix blocks having a fractal structure. The dispersed and
mixed solute tracer continues to reach the production well from the
surrounding flow paths, whereas we cannot take into account this effect
in the ASMLS model. Therefore, the solute residence time is larger in the
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Table 6
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Results were obtained from fitting the analytical ASMLS model (Eq. (23)) to tracer measurements. Parameters were determined for tracer tests between Well-Li; and

the production wells listed.

From Well-L;,; to other wells Az (m) AP * (MPa) R (i) u(ms Y x (m?)® a (m)

Uy uy, U, Ky Ky Ky ar, ar
Well-Apro 250 2 115 8x107° 45x10° 65x10° 6x107% 2x107  13x10'% 260 a; x 0.4
Well-Hpyo 600 6 115 8x10° 55x10° 9x10° 2x102  3x10®  15x10'* 260 ., x04
Well-Cpro 1000 8 115 14x10° 13x10* 4x10° 3x10"®  1x10'% 8x10"3 260  a x 0.4
Well-Byyo 1100 10 115 11x10° 14x10% 45x10° 2x10® 1x107'2 8x107%® 260  ap x 0.4

2 Values are obtained from the TOUGH2 numerical model while pressure difference reaches steady-state conditions. = 0.16 x 107> at 230 °C temperature.

Absolute permeability is calculated with Eq. (24) as explained in Table 5.

10 a) 10 b)
= — Analytical Eq, 23 .
b © Measlred b <
E P Numerical AL E 5 RN
E‘ - g R welH_
o o
0 o 0 . —
1] 500 1000 0 500 1000
time (days) time (days)
10 ° 10
= )
E: 2 i Well-C
> & * o
0 o >
a 500 1000 0 500 1000
time (days) time (days)

Fig. 8. Fitting between the analytical ASMLS model response (Eq. (23)) and
tracer measurements, and comparison to the numerical model results. The
parameters specified in the numerical model can be found in Table 6. Tracer is
injected into Well-Lig;.

numerical model. Further sensitivity analysis with the numerical model
revealed that the specified fracture porosity has an impact on the tracer
amount obtained at the production well. Smaller fracture porosity
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causes faster fluid flow velocity due to a larger pressure gradient.
Therefore, the tracer front-advection is more dominant and a larger peak
is observed. In contrast, larger fracture porosity decreases the fluid flow
velocity and the tracer disperses through matrix blocks. This hampers
the detection of a clear peak in the BTC. The matrix permeability has a
minor impact on the mean arrival time because the advection is pre-
dominant through fractures and the arrival time of the tracer is not
affected.

Furthermore, tracer BTCs observed in production wells as a result of
tracer injection into Well-Liyj located in the eastern part of the field are
analyzed (Fig. 3). For this case, the evaluated parameters obtained from
the Monte-Carlo simulations are reported in Table 6. In particular,
permeability values are in line with the values for the first injection case
shown in Table 5. The wells Ay, and Hy, are located at shallower
depths compared to the deeper wells, By, and Cpro. As a result, y is
larger at a shallower depth (1000 m to 1500 m) and slightly decreases at
the deeper reservoir sections (2000 m to 3000 m). In contrast to Ky, Kz
shows opposite behavior at identical depths compared to Table 5. Drill
cuttings and well-log data show that quartzite-schist is found at some
shallower and deeper sections of the reservoir. These formations contain
platy minerals such as muscovite laminations that may act as barriers
and enhance the anisotropy of the permeability with increasing shear
stress of the faults (Zhang et al., 1999; Almqvist et al., 2011).

The permeability values given in Table 6 are specified in the
TOUGH2 numerical model using the aforementioned simulation
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Fig. 9. Injected tracer amount along Fault-2 calculated with the analytical ASMLS model (in mg m ~ ). a) Results after 10 days of injection. b) Results 300 days after
tracer is released. 200 kg of tracer is released from Well-Liy; (400 m screen length considered for the line source). Mean flow velocities are specified according to
Table 6 as above 1500 m depth: u, = 8 x 107%, u, =5 x 107°, u, = 7 x 107>; below 1500 m depth: u, =1 x 107>, 1, =1 x 10%, u, = 4 x 107>
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procedure. The matrix properties are specified identical as in the pre-
vious case. The results of the numerical model demonstrated in Fig. 8 for
the Well-Lyy; injection case show delayed and shifted arrival of the peak
at Well-Byo, most likely due to the dispersed solute tracer through cross-
flow paths between matrix blocks and leading to longer solute residence
time distribution. This indicates that rendering the macro-dispersivity
values obtained from the ASMLS model by the numerical model by
block sizes is not appropriate due to the conceptual numerical as-
sumptions. Moreover, Fig. 8 also shows that the peak concentration is
overestimated at Wells Hpr, and Apo. The distance is closer between
these wells and Well-Li,; compared to Well-By,;, and Well-Cy,. Here, the
advection dominates the flow along a preferential path with a minor
contribution from dispersion, causing a faster transport and larger tracer
concentration observed at the production wells. Due to low dispersion,
the solute residence time observed at Wells Hp;, and Ay is short.

These discrepancies between the measured and numerical results can
also be attributed to the injection transformation method in the
TOUGH2 simulator, proposed by Tomasdottir (2018) mentioned in
Section 2.4, may have an impact on the mean arrival times due to a
longer injection period in the numerical model (i.e., 7000 s). New de-
velopments in conditional stochastic transport modeling (Wu et al.,
2021) and multiscale or hierarchical geostatistical modeling (Bodin
2020) may overcome this inconsistency in fractured reservoirs but re-
quires large computational expense.

The tracer transport visualized in Fig. 9 shows how the injected
tracer is dispersed at different time frames along Fault-2 calculated with
the proposed ASMLS model. The tracer is injected into Well-Liy; and
propagates mainly in the z-axis along the deeper part of Fault-2. After 10
days of tracer injection, the largest tracer amount is calculated around
1200 mg m~> that has moved approximately 200 m to the deeper
reservoir sections (Fig. 9a). The tracer plume is spread through Fault-2
after 300 days at which the mean arrival time is detected for the tracer at
the observation wells. The tracer plume where the largest tracer amount
is calculated around 14 mg m™ at the center, penetrates through the
deeper parts of the reservoir (Fig. 9b).

4. Discussion

The workflow employs an analytical model coupled with Monte-
Carlo simulations for characterizing complex geothermal reservoirs.
The ASMLS model provides an anisotropic flow field triggered by forced
convection between injection and production wells, whereas other ap-
proximations assume uniform or non-uniform flow velocities. Specif-
ically, Sauty’s uniform porous model gives dispersivity values.
Compared to the ASMLS model, the longitudinal and transverse dis-
persivities are relatively small in Sauty’s approximation. The reason can
be attributed to the reduced dimensional flow, which may lead to a
smaller apparent 2-D dispersivity. The model of Welty & Gelhar (1994)
accounts for the variable-velocity conditions of a flow field, but the di-
rection of the flow is still uniform. In other words, the flow velocity
varies in a single direction. Compared to the other models, the dis-
persivity value obtained from the solution of Welty & Gelhar (1994) is
two orders of magnitude larger. The reason is that the integration of flow
velocity over distance (Eq. (31) and Eq. (32)) has an impact on the
dispersion that is evaluated. As the distance increases in the field (e.g.,
1000 m distance between the wells), the dispersion value significantly
increases with the model developed by Welty & Gelhar (1994). The
model of Houseworth et al. (2013) is based on separated flow mecha-
nisms both in fracture and matrix. However, the fit of tracer data is
achieved with similar flow velocities in fracture and matrix. When
compared to the model of Bullivant & O’Sullivan (1989), the fracture
aperture is one order of magnitude larger and Eq. (34) takes into account
dispersion and retardation through fracture and matrix, which yields an
increase of the tracer arrival time (D* in Eq. (34) becomes 3 x 1073 m?
s71). Comparison of Peclet numbers indicates that the transversal
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propagation is stronger in Sauty’s model. Roubinet et al. (2012), who
inspected the transverse dispersion effect in a 2-D fracture-matrix flow,
demonstrated that the longitudinal diffusion in the matrix is crucial at
low Peclet numbers, whereas the transverse dispersion in fractures has a
minor impact on solute transport. However, Sauty’s approximation to
estimate Peclet number (Pe;, = Ax / ay, Per = Ay / (g ap) "V 2) is based
on the given coordinates that are specified rather than actual fracture
aperture or equivalent pore diameter. Aside from this, Peclet numbers
calculated using the proposed analytical ASMLS model show similarities
in opposite directions between Pe, ~ Per and Pe, ~ Pe; due to dimen-
sional differences in calculations. All of the aforementioned approxi-
mations provide similar uniform flow velocities, which correspond to
the flow velocities in the y- and z-direction, with the observation well
located on flow axes of y and z in the proposed model. The dispersivity is
an additional parameter facilitating accurate matches with the
measured data.

The ASMLS model provides similar outputs but has some major ad-
vantages such as evaluation of anisotropic flow velocities and allowing
pulse tracer injections into multi-well systems in which the duration of
the injection can also be adjusted. In contrast to other analytical solu-
tions, the calculation of the ASMLS model is somewhat larger due to the
convolution technique in which the unit impulse (i.e., tracer injection)
was convoluted explicitly over time. As the required time interval be-
comes smaller, the runtime of the convolution takes longer. For instance,
fitting a tracer test measurement for one year with an hour time interval
takes three seconds for each stochastic random variable. This is a
disadvantage for statistical Monte-Carlo simulations in which the anal-
ysis may consist of thousands of realization values to determine a
confident interval for unknown parameters.

The use of the ASMLS model for fractured media application is only
feasible when the hydraulic conditions can be similarly described by an
equivalent porous media. We assumed an upscaled equivalent with
respect to the Peclet number, and the macro-dispersivity reflects scale
effects of heterogeneous media (Gelhar et al., 1979). This is supported
by Neuman (1994; 2008) indicating that the volume-averaged fractured
rock properties exhibit similarities to that of porous media. In addition,
Neuman (1987; 2005) and others (Ando et al., 2003; Neuman and Di
Federico, 2003) suggest that flow and transport equations developed for
the fractured rocks are amenable to the equations derived for porous
media. In contrast, Zech et al. (2015) state that available scale laws are
quite arbitrary, and fractured rocks cannot be defined by Fickian laws.
However, Neuman (2016) points out that the data sets used by Zech
et al. (2015) for small-scale values are not sufficient to demonstrate a
dispersivity scale effect. Still, there exists no consensus on representative
anisotropies and scaling behavior of dispersivities employed in
convection-dispersion-diffusion-based models (Park and Lee, 2021;
Tang and Zee, 2021). A major role for the non-univocal observations is
played by the diversity of geological conditions.

The comparison between macro-dispersivity and the numerical dis-
persivity in the numerical simulation with the MINC approach demon-
strates that the numerical dispersion parameters with the nested matrix
blocks to represent the macro-dispersion of a tracer are not relevant. In
the numerical model, dynamic flow factors such as low-permeability
transition zones between fracture and matrix blocks and preferential
flow paths dominantly control the transport process of the tracer that
affect the results. The matrix-fracture functions are based on the ge-
ometry of the matrix and fractures (i.e., square blocks in the MINC
approach) that are lumped to a factor called the shape factor (Rostami
et al.,, 2020). Perhaps, different geometries and shape factors of
matrix-fracture systems provide better consistency between
macro-dispersivity and numerical dispersivity in fractured porous media
simulations.

5. Conclusions

A new workflow for the analysis of a tracer test conducted in a
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geothermal reservoir is presented. In the workflow, a 3-D analytical
model for tracer injection is developed to inspect solute transport in an
anisotropic medium. A Monte-Carlo simulation algorithm is then
coupled to determine optimal values for unknown reservoir parameters.
The estimated parameters are used in a more complex numerical model
to evaluate the solute residence time in a large-scale reservoir and
benchmark the numerical dispersion against macro-dispersion.

The ultimate purpose of this workflow is to characterize the course of
energy depletion in a geothermal reservoir, thus the impact of reservoir
cooling on the production, and to support optimization of long-term
injection strategies.

Embedded in the presented workflow, the ASMLS model is based on
Green’s function method to facilitate a moving line source of the
convection-dispersion-diffusion equation for solute transport. After-
ward, the derived equation is analytically convoluted with a rectangular
function of a pulse, which solves the equation in a given period. This
convolution technique can provide flexibility to model multiple tracer
injections from several wells in a given time. Several solute tracer
transport approximations reported in the literature are analyzed and
compared with the proposed analytical model. The results demonstrate
that independent of the model type (e.g., uniform porous, fracture-
matrix, etc.), analytical approaches can be used to determine reservoir
parameters representative of the Kizildere geothermal site. However,
these approximations provide uniform and non-uniform flow parame-
ters, which are not adequate to inform a fully-resolving 3-D numerical
model for detailed geothermal reservoir characterization. This is over-
come by the new ASMLS model that yields robust fundamental param-
eter values such as those of flow velocities, longitudinal and transversal
dispersivities in systems. In addition, Monte-Carlo simulations help to
quantify parameters.

For the construction of the 3-D numerical model, the evaluated pa-
rameters, longitudinal and transverse dispersivities, obtained from the
analytical model, are used to specify the length, width, and height of
matrix blocks in a simulated dual porosity system (i.e., the MINC
approach). Two injection cases from different wells are considered to
scrutinize solute residence time distribution. In the first case, the
injected solute tracer mixes and considerably disperses in the numerical
model due to the matrix blocks having a fractal structure. Therefore, the
solute residence time is larger in the numerical model. In the second
case, the injected tracer reaches the production wells, which are close to
the injection well, with a larger peak concentration and the solute
residence time distribution is short indicating that dispersion is less
significant. These comparisons of the two injection cases do not show
any significant relationship between dispersivity and the matrix block
sizes. Therefore, dispersivity can be considered separately. This also
demonstrates that the mechanical macro-dispersion cannot reliably be
represented by numerical dispersion. The transition between matrix and
fractures described with block geometries and its defined shape factors
most likely affect the results in the numerical simulations. Different
geometries and shape factors of matrix-fracture systems may overcome
this inconsistency. Alternative concepts of stochastic transport modeling
and multiscale-hierarchical geostatistical modeling may support exam-
ining various geometries and shape factors of those systems to evaluate
correct numerical dispersion system equivalent to macro-dispersion.

The presented workflow represents an integrated approach to
acquiring possible effective parameters from well-to-well tracer data
while reducing the computational effort and ambiguity to assess
geothermal reservoir characteristics. It is most suitable for tests con-
ducted in reservoirs where significant parameter anisotropy prevails,
and forced convection between the injection and production wells is
dominant. The workflow follows a stochastic procedure to determine
reliable value ranges of unknown parameters. This is crucial for setting
up a more comprehensive numerical model to analyze the solute resi-
dence time distribution, which could be further improved with a more
detailed geological or geostatistical conceptualization. The ASMLS
model provides promising estimations of dual-porosity systems under
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steady-state conditions. In contrast, its applicability to dynamic dual-
permeability would be limited.

To interpret reactive tracer applications, the analytical model
developed here accounts for retardation. The retardation factor imple-
mented in the model can for instance quantify the effect of sorption of
biochemical organic tracers. Moreover, for nonconservative tracers, the
reaction part of the solute transport equation can be implemented to
take into account first-order decay. (Eq. 2-5, 9, 12, 14, 18, 21, 22, 26, 28,
35, 37)
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