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ABSTRACT

This work reviews various studies of hydraulic and pneumatic tomography for estimation of flow properties of
fractured geologic media with hydraulic and pneumatic tomography. The underlying conceptual inversion
models can be broadly classified as continuum and discrete fracture network models and deterministic and
stochastic approaches. A heterogeneous continuum method applies porous media parameters, while a DFN
approach utilizes structural and hydraulic properties of fractures. An overview of field, laboratory, and synthetic
studies with applications of hydraulic, pneumatic, or tracer tomography for the characterization of fractured
geologic media shows that most studies rely on a heterogeneous continuum conceptual model and geostatistical
methods to achieve a solution to the inverse problem. The application of a heterogeneous continuum model
results in hydraulic properties that are representative of both fracture and matrix. Therefore, this approach may
be more operationally useful for large scale sites with a non-negligible hydraulic conductivity of the rock matrix
and high fracture intensity. The flow properties of single fractures can be estimated by applying a discrete
fracture network (DFN) model. However, assumptions concerning fracture patterns and corresponding flow
properties can lead to an oversimplified geological model. Possibilities for future research include integrating
additional data and results from other inversion methods, the application of neural networks for inversion, the
implementation of inversion results for the prediction and optimization of processes according to the planned
application at the site, and opportunities for real-time inversion.

1. Introduction

and the distribution of fractures are crucial for the evaluation of po-
tential sites for nuclear waste repositories (Follin et al., 2014; Li et al.,

Open fractures represent the preferential pathways for flow and
transport in an otherwise intact rock matrix. They often form a network
that results in a complex flow field depending on the size, geometry, and
connectivity of fractures, and the hydraulic properties of the matrix.
Despite the significant challenge to resolve these networks and to reli-
ably describe their hydraulic properties, fractured sites are the target for
various applications in hydrogeology and engineering. For instance,
fractured aquifers host important groundwater resources (Chandra
etal., 2019; Spencer et al., 2021; Wilske et al., 2020). Open fractures are
also the main conduits for contaminant transport affecting groundwater
resources (Berkowitz, 2002; Hadgu et al., 2017; Neuman, 2005).
Extraction of geothermal energy or petroleum resources and seques-
tration of carbon dioxide rely on well-connected fracture networks by
generating new fractures or by opening already existing ones through
hydraulic, thermal, or chemical stimulation. Moreover, the properties
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2022), for the description of an excavation-induced damaged zone
around tunnels and openings (Armand et al., 2014; de La Vaissiere et al.,
2015; Jalali et al., 2023), and for mining and extraction of minerals
(Trabucchi et al., 2022). In all these different application areas, models
and in particular specialized high-fidelity simulation tools are essential
for improved understanding of subsurface processes. However, the
applicability of these models depends on the reliability of fractured site
characterization.

The fundamental issues and challenges regarding the characteriza-
tion of fractured rocks for flow and transport quantification are dis-
cussed by Berkowitz (2002) and Neuman (2005). In contrast to studies
reviewing monitoring and simulation methods for fractured sites (e.g.,
Berre et al., 2019; Lei et al., 2017; Viswanathan et al., 2022), this review
focuses on the static characterization of the structural and hydraulic
properties of fractured rocks with hydraulic and pneumatic tomography.
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A general understanding of the structural properties of fractured rock
sites, such as fracture intensities or prevalent fracture orientations, is
derived by analyzing outcrops or evaluating the parameters of fractures
intercepted by boreholes with borehole core samples or optical or
acoustic televiewers (Armand et al., 2014; Barthélemy et al., 2009;
Chandra et al., 2019; Follin et al., 2014; Ishibashi et al., 2016; Krietsch
et al., 2018; Ma et al., 2022; Massiot et al., 2017; Pavici¢ et al., 2021;
Ren et al., 2018; Vogler et al., 2018; Yin and Chen, 2020). The inter-
pretation of single- and cross-borehole pumping/injection or tracer tests
provides information about the hydraulic properties of the fracture
network. The joint inversion of the recorded data from multiple tests is
called hydraulic (HT), pneumatic (PT), or tracer (TT) tomography.
These tomographic methods yield a two-dimensional (2D) or three-
dimensional (3D) image of subsurface heterogeneity. Fractured rock
sites typically pose a significant challenge for the application and eval-
uation of pumping/injection and tracer tests due to the sharp contrast
between permeable fractures and the surrounding rock matrix.

Geophysical methods, such as stress-based tomography, electrical
resistivity, seismic reflection, or ground penetrating radar offer only an
indirect link between the hydraulic properties and the measured signal
(Afshari Moein et al., 2018; Day-Lewis et al., 2017). A summary of
various surface-based and borehole logging geophysical technologies
suitable for the characterization of fractured media is provided by Day-
Lewis et al. (2017). They also describe the measured parameters and
indicate the potential target application of each method.

Cardiff and Barrash (2011) review studies utilizing HT and propose a
procedure for the application of HT to the inversion of 3D unconfined
permeable aquifers by conducting synthetic test cases. The character-
ization of fractured geologic media with a heterogeneous continuum
conceptual model is reviewed by Illman (2014) discussing the benefits of
HT over traditional characterization and modeling approaches. In our
review, we discuss recent developments and challenges in fractured site
characterization by HT and PT, such as the application of a discrete
fracture network (DFN) model. For this purpose, we provide a theoret-
ical overview of different conceptual models, inversion methods, and
their application in practice in Section 2. In the subsequent section, we
summarize studies concerning the characterization of fractured rock
sites with HT, PT, and TT. This leads to a comparison between contin-
uum and discrete conceptual models of fracture networks in Section 4.
Finally, we discuss possible research directions in Section 5.

2. Overview of inversion methods applicable in fractured
geologic media

2.1. Geometry of fracture networks

Fractures are mechanical discontinuities with a predominant direc-
tion, i.e., a void space confined on two sides by the surface of the intact
rock. The length of a fracture can be variable ranging from centimeters
to kilometers while the fracture aperture, i.e., the distance between
fracture surfaces, is small compared to its length. The aperture of a
fracture depends on the properties of the rock surfaces. Their fluctua-
tions determine the local aperture distribution and are commonly
described by statistical methods, such as a probability density function
of the surface fluctuations, an autocorrelation function describing the
nature of each surface, and an intercorrelation function to relate the
fluctuations of the upper and lower surface (Adler et al., 2013; Mour-
zenko et al., 2018; Vickers et al., 1992; Vogler et al., 2017).

The geometric properties of fracture networks are characterized by
the fracture intensity, the network connectivity, and the spatial corre-
lation of the properties of individual fractures, mainly the aperture,
length, and orientation of fractures (Berkowitz, 2002). The parameters
of the fracture network can be described by statistical distributions, such
as the power law distribution (Bour and Davy, 1997; de Dreuzy et al.,
2012; Hyman et al., 2019). Thereby, the term fracture network implies
an impervious or low-permeable rock matrix, such as crystalline or

Journal of Hydrology 631 (2024) 130709

metamorphic rocks. In contrast, a fractured porous medium has a non-
negligible matrix permeability allowing for fluid exchange between
fractures and the adjoining matrix (Adler et al., 2013; Berkowitz, 2002;
Berre et al., 2019).

2.2. Experimental setup for pumping/injection or tracer tests

The pumping/injection or tracer tests that we are studying have a
common principle. They repeatedly perturb the system under investi-
gation by pumping or injecting some fluid or tracer into numerous
borehole intervals (Fig. 1). To achieve this, various borehole intervals
are isolated using packer systems, FLUTe liners, or grouting. Signals
generated by this procedure are recorded at multiple monitoring in-
tervals. The aim of these tests is to establish a relationship between the
recorded signals and the connectivity or hydraulic properties of the flow
paths between borehole intervals.

Single- and cross-borehole pumping/injection or tracer tests char-
acterize the local hydraulic or pneumatic properties around a borehole
interval (Brixel et al., 2020a; Guzman et al., 1996; Hsieh et al., 1983;
[llman and Neuman, 2000; Ren et al., 2018), or the hydraulic or pneu-
matic properties of the connection between several intervals (Brixel
et al., 2020b; Chuang et al., 2017; de La Vaissiere et al., 2015; Hsieh
et al., 1985; Frampton and Cvetkovic, 2010; Illman and Neuman, 2001;
Jalali et al., 2018; Le Borgne et al., 2006; Paillet, 1995; Paillet and
Morin, 1997; Tiedeman et al., 2010), the velocity distribution (Kang
et al., 2015), transport properties (Cvetkovic et al., 2010; Cvetkovic and
Cheng, 2011; Kittila et al., 2019), or the effects from hydraulic stimu-
lation (Amann et al., 2018; Kittila et al., 2020). Moreover, they are
applied for constraining the hydraulic properties of simulation models
(Cvetkovic et al., 2007; Follin et al., 2014; Li et al., 2022). Applied tracer
injections include salt (Chuang et al., 2017; Doetsch et al., 2012;
Giertzuch et al., 2021a; Giertzuch et al., 2021b; Jardani et al., 2013),
reactive chemicals (Illman et al., 2010; Yeh and Zhu, 2007), dye or DNA-
labeled tracers (Kittila et al., 2019; Kittila et al., 2020), or heat (de La
Bernardie et al., 2018; Hermans et al., 2015; Klepikova et al., 2014;
Somogyvari et al., 2016). The standard approach for characterizing the
heterogeneity of fractured rocks involves estimating local hydraulic
conductivities or permeabilities from single-hole tests and interpolating
these values using kriging, stochastic simulations, and geostatistical
inverse modeling (Blessent et al., 2011; Park et al., 2004; Vesselinov
et al., 2001a, 2001b; Yeh et al., 1996). We refer to Illman (2014) for
additional references on mapping heterogeneity by single-hole and
single cross-hole data while the focus of this review is on the simulta-
neous interpretation of all recorded pressure, hydraulic head, or tracer
responses. The joint inverse modeling of multiple cross-hole pumping/
injection or tracer tests yields an estimate of the appearance and con-
nectivity of fractures or of the distribution of the hydraulic properties of
fracture networks depending on the choice of the conceptual model
utilized in inverse modeling.

2.3. Conceptual models utilized in inverse modeling

Different conceptual models have been developed for the represen-
tation of properties of fracture networks in inversion models. In general,
we distinguish between continuum and discrete descriptions, and be-
tween deterministic and stochastic models. The continuum models
consist of homogeneous and heterogeneous approaches. All parameters
necessary for the description of the system are summarized in a
parameter vector. A schematic overview of the conceptual inversion
models is given in Fig. 2 for a fictitious two-dimensional (2D) example.

A continuum approach utilizes porous media parameters which are
the spatial distributions of hydraulic conductivity K [ms~'], perme-
ability k [m?], or transmissivity T [m®s~!]. In addition, specific storage
Ss [m~1], storativity S [—], or porosity ¢ [—] fields are estimated for
transient problems. The ratio K/Ss is the diffusivity D [m?s~!]. In this
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2D schematic experimental setup of pumping/injection or tracer tests (a). In this case, two boreholes and, in total, six injection and monitoring intervals are

shown. Pumping in interval 1 causes responses in intervals 2 and 3 which are used in inverse modeling (b).

a) Heterogeneous continuum

Deterministic
Hydraulic parameter

Stochastic

Mean hydraulic parameter/

Uncertainty of parameter

b) Discrete fracture network

Hydraulic parameter
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Fig. 2. Schematic overview of conceptual inversion models for a fictious 2D example surrounding two boreholes (black lines) which are applied for the charac-
terization of fractured geologic media, heterogeneous continuum (a and c¢) and DFN models (b and d) and deterministic (a and b) and stochastic (¢ and d) models.
Hybrid models are a combination of heterogeneous continuum and DFN models. Different realizations of the parameter vector my, ---,my which are generated by
stochastic methods, are indicated in the boxes. The resolution of results depends on the scale of the investigated area and the element size.

study, we use bold symbols to indicate that these parameters are vectors
with one value for each element. A homogeneous model is based on a
spatial representative elementary volume (REV) which can be applied
for dense and highly connected fracture networks (Berkowitz, 2002;
Dong et al., 2019; Yeh et al., 2015). In this case, the hydraulic properties
defined for a control volume (CV) can be applied independently of the
spatial position of the CV (Yeh et al., 2015). In practice, the REV is often
too large in comparison to the measurement intervals to be applicable
and a heterogeneous continuum description is necessary (Neuman,
1987). Thereby, the hydraulic parameters are defined for small CVs
without assuming a REV condition. The investigated area or volume is
discretized into small porous media elements and the hydraulic pa-
rameters are estimated for each element (Dong et al., 2019; Zha et al.,
2015), as illustrated in Fig. 2a and 2c. The size of the parameter vector
equals the number of elements for steady-state HT or PT data or twice
the number of elements for transient problems (Zha et al., 2015). In

order to assess the anisotropy of a system, each component of the hy-
draulic conductivity distribution can be treated as tensor to determine
their directional and principal components. Since this approach in-
troduces numerous additional unknowns, it is typically not utilized in
inverse modeling for individual elements or grid blocks. Instead, it is
more common to estimate the tensor components with a least-squares fit
to various cross-hole flow tests on a REV scale by assuming a homoge-
neous anisotropic continuum (Hsieh et al., 1985; Neuman et al., 1984).
The validity of the approach requires that the measured data fit the
theoretical type curves and that the entries of the hydraulic conductivity
tensor can be estimated reliably by minimizing a least-squares error.

A more direct representation of fractures and the anisotropy of the
flow field is facilitated by applying a DFN model (Fig. 2b and 2d).
Thereby, the fracture geometry is simplified to lower-dimensional ob-
jects that are 1D straight lines in 2D problems or 2D planes in 3D
problems that are referred to as the so-called parallel plate model
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(Zimmerman and Bodvarsson, 1996). The parameters that describe the
fracture network are basically the number of fractures and, for each
fracture, their structural (i.e., position, orientation, fracture shape,
length, aperture) and hydraulic parameters as scalar quantities (hy-
draulic conductivity K¢, permeability k, or transmissivity Ty and specific
storage Sg or storativity S¢) as well as the distribution of each hydraulic
parameter within one fracture. The cubic law relates the volumetric flow
rate to the pressure or hydraulic head gradient by the hydraulic aperture
as to the power of three. It holds for open fractures with negligible
surface roughness (Berkowitz, 2002; Zimmerman and Bodvarsson,
1996). For the implementation in inversion models, the parameter
vector of the DFN is reduced by applying assumptions and simplifica-
tions, e.g., about the fracture shape or orientation (Fischer et al., 2018¢;
Klepikova et al., 2013; Ringel et al., 2021). Therefore, the size of the
parameter vector is the number of fractures times the number of pa-
rameters that are estimated for each fracture. Therefore, Fig. 2b and
d vary according to the constant or variable DFN parameters specified
for each study.

The hydraulic parameters of the rock matrix have to be incorporated
in the inversion problem for sites consisting of fractured porous geologic
media. This can be accomplished by hybrid models, which superimpose
a DFN model and a heterogeneous continuum model by a conforming
discretization at the boundaries between fracture and matrix or transfer
terms to couple fracture and matrix elements. A specific type of hybrid
model is the discrete fracture matrix model that includes large
conductive fractures that are represented explicitly by their structural
and hydraulic properties, while smaller, less conductive fractures are
considered as hydraulic properties of the matrix (Berre et al., 2019).
Multi-continuum models apply different continua for fracture and ma-
trix. To date, these models have been applied only for the simulation of
flow and transport in fractured rocks, not for inversion problems.

Inversion models are also categorized with deterministic and sto-
chastic representations. A deterministic model applies a single param-
eter vector for describing the subsurface properties (Fig. 2a and 2b). The
evaluated parameter vector is calibrated by minimizing an objective
function which is the error between measured and simulated data in
most studies (Klepikova et al., 2013). The uncertainty and non-
uniqueness of the description of the properties of the fractured rock
are considered by a stochastic approach that generates several re-
alizations of the parameter vector. Thereby, the parameters are char-
acterized by probability distributions and a mean parameter vector and
its uncertainty or variance can be evaluated (Fig. 2c and 2d). An
example of a stochastic heterogeneous continuum approach is the sto-
chastic continuum method (SCM) introduced by Neuman (1987) and
Tsang et al. (1996) for fractured geologic media.

2.4. Solution of the inverse problem

In general, forward or inverse problems provide a relation between
experimental data and the parameters that are the quantity of interest to
be estimated from experiments. Therefore, such problems comprise the
following elements: the input data is obtained from observations or
measurement campaigns, while the forward operator describes the
present system that depends on a vector of model parameters (Aster
et al., 2018). Depending on the problem, the forward operator is an
ordinary or partial differential equation, or a system of equations. For
most applications, the input data contains observation errors or mea-
surement noise. The execution of the forward operator for a given
parameter vector is a so-called forward problem, that is, the outcome of
a tomography survey simulated based on model parameters. Thereby,
conceptual model errors and discretization errors are introduced by
assumptions applied to reduce the number of model parameters, sim-
plifications of the underlying physics, or through the discretization of
the differential equation in a numerical model.

In contrast to the forward problem, an inverse problem deals with
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finding the model parameters given the input data (Aster et al., 2018).
Several difficulties arise for the computation of inverse problems in
practice. Due to measurement noise and errors or simplifications in the
forward simulations an exact fit between the data simulated with a
parameter set and the observed data is usually not possible. In addition,
the number of parameters describing a system is often large making the
solution nonunique. Therefore, assuming a simulation model with
negligible errors, known and sufficient boundary and initial conditions,
several model parameter realizations can lead to a minimum error be-
tween the simulated and observed data and therefore, give the best es-
timate of the hydraulic and structural parameters (Carrera et al., 2005;
Yeh et al., 2015). A reduction of the number of parameters, e.g., due to
the computational costs of iteratively solving the inversion problem, can
lead to an oversimplification of the problem or may introduce structural
errors (e.g., use of an inaccurate geological model or fracture distribu-
tion in a DFN). In that case, the solution can be less reliable and un-
certainty estimates to be higher since it relies on improper physics or
geometries despite a good fit of the simulated and observed data.

Depending on the input data, the conceptual inversion model, the
forward model, and the scale of the investigated domain, different
methods for the solution to the inverse problem with HT or PT data are
feasible. The most common methods in hydrogeology are deterministic
optimization approaches, geostatistical methods, and stochastic sam-
pling methods. The different inversion methods for the characterization
of fractured sites with HT, PT, and TT, the applied inversion method,
and the results that are evaluated in each study are summarized in
Table 1.

A deterministic solution is derived by minimizing the misfit between
the measured data and the results from the forward simulation. The
optimization is implemented generally as an iterative process of
updating the parameter vector such that the observed head or pressure
data matches the results of the forward simulation. The steps for solving
an optimization problem are generally described in Carrera et al. (2005).

Travel time inversion is a specific type of inversion that applies a
deterministic heterogeneous continuum model. The concept was
adapted from seismic tomography to HT, PT, and TT. The basis is a
relation between the travel time of the measured signal and the line
integral of the reciprocal of the diffusivity (Brauchler et al., 2003). For
advection-driven problems, such as heat transfer or tracer transport, the
diffusivity can be replaced by the application of Darcy’s law, i.e.,
porosity, permeability, and pressure gradient (Vasco and Datta-Gupta,
1999). For the inversion of HT data, the first derivative of the pressure
or hydraulic head response is applied (Brauchler et al., 2013b). To
distinguish preferential flow paths and to reduce the effects of diffusion,
early-time diagnostics can be applied for thermal and hydraulic to-
mography (Somogyvari et al., 2016). The travel time is recorded at each
receiver which functions as the input data for the solution of the inverse
problem. The investigated domain is discretized and the trajectory
length of the signal through each element is calculated, which depends
on the material properties of each element. Then, the material param-
eters are adapted iteratively to match the observed travel times. The key
advantages of the travel time approach are imaging of structural features
representing high-diffusivity zones, requirement of less data for inverse
modeling, and computational speed. However, the approach yields D
tomograms and not K and Sg tomograms that are more useful for
groundwater flow modeling.

A stochastic approach is based on the conditional probability of the
parameter vector given the measured head or pressure signals. The
sequential or the simultaneous successive linear estimator (SSLE or
SimSLE) in Table 1 are frequently applied iterative geostatistical esti-
mation methods that rely on the stochastic heterogeneous continuum
representation of the subsurface properties. SSLE and SimSLE are an
extension of kriging and cokriging methods (Xiang et al., 2009; Yeh and
Liu, 2000). The element-wise natural logarithm of K and Sg are formu-
lated as multi-Gaussian processes, i.e., the parameters are characterized
by their mean, variance, and correlation among each other (Yeh et al.,
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Table 1
Overview of studies (field, laboratory, or synthetic) concerning the characterization of fractured media with HT, PT, and TT, the inversion method, and corresponding
results.

Site/Application

Study

Type of tomographic survey,
data for inverse problem

Inversion method

Inversion results

Apache Leap Research Site
(USA)

Blair Wallis fractured rock
hydrology research field
(USA)

Gottingen (Germany)

Grimsel test site (Switzerland)

Meuse/Haute-Marne
underground research lab
(France)

Mizunami underground
research lab (Japan)

Ploemeur aquifer test site
(France)

Salar de Atacama (Chile)

Terrieu (France)

Waiwera aquifer (New Zealand)

Former Naval Air Warfare
Center (NAWC), West
Trenton (USA)

Xieqiao coal mine (China)

Xindong coal mine (China)

Laboratory studies

Synthetic test cases

Vesselinov et al.,
(2001a,2001b)

Ren et al. (2021)

Liu et al. (2022)

Liu et al. (2023)

Yang et al. (2020)
Kittil et al. (2020)
Klepikova et al.
(2020)

Meier et al. (2001)
Ringel et al. (2022)

Jalali et al. (2023)

Illman et al. (2009)
Zha et al. (2015)
Zha et al. (2016)

Zha et al. (2017)
Dorn et al. (2013)

Klepikova et al.
(2014)

Trabucchi et al.
(2022)
Fischer et al.,

(2017b)
Fischer et al.,
(2018a)

Fischer et al.,
(2018b)

Fischer et al. (2020)
Wang et al. (2016)
Wang et al. (2017)
Somogyvari et al.
(2019)

Tiedeman and
Barrash (2020)
Wang et al. (2021)
Mao et al. (2018)

Brauchler et al.
(2003)
Brauchler et al.,
(2013a)

Poduri et al. (2021)
Sharmeen et al.
(2012)

Zhao et al. (2021)
Chen et al. (2023)

Transient PT

Transient HT

Thermal TT

Tomographic slug tests

Transient HT
Dye TT

Transient HT

Steady-state and transient HT
Transient HT

Transient PT

Transient HT
Transient HT
Transient HT
Transient HT

TT

Flow tomography/ Thermal
TT

Transient drawdown data

Steady-state HT

Oscillatory HT

Oscillatory HT

Steady-state HT

Steady-state HT

Steady-state HT

Borehole temperature profiles

Transient HT

Transient HT
Transient HT

Transient PT

Gas TT
Transient HT

Transient HT

Transient HT

Transient HT

Interpolation by pilot points; kriging

SimSLE

Travel time

Travel time and attenuation-based
inversion
Travel time

Travel time

Nelder-Mead optimization

Geostatistical inversion
MCMC

Travel time and MCMC

SSLE

SimSLE
SimSLE
SimSLE

Hierarchical rejection sampling (MC)
Optimization

Regularized pilot point stochastic
inversion

Cellular automata-based deterministic
inversion

Interpretation of amplitude/ phase
offset

Cellular automata-based deterministic
inversion

Discrete deterministic network
inversion
Sparse nonlinear optimization

Transition probability geostatistics
and stochastic Newton MCMC

MCMC

Bayesian geostatistical approach

SimSLE
SimSLE

Travel time

Travel time

Interpolation at pilot points by
ordinary kriging
SSLE

SSLE

Hierarchical parameterization, deep
learning-based ensemble smoothing

3D k and ¢ tomograms

2D K, Ss, and D tomograms

2D K tomogram

3D K, Ss, and D tomograms

2D D tomogram
2D K tomogram before and after stimulation

Tr and Sy of 2D connectivity structure
between injection intervals

2D T tomogram
3D fracture probability and mean ap

3D D tomogram and 2D fracture probability

3D K and Sg tomograms
3D K and Ss tomograms
3D K and Sg tomograms
3D K and Sg tomograms

Connectivity and effective transmissivity of
3D fracture network

Tt of 2D connectivity structure between
injection intervals

2D K tomogram

2D T tomogram

Interpretation of the connection between
boreholes as conduit, matrix, or hybrid
2D T and S tomograms

T; and 2D DFN structure; 2D T distribution
of matrix
2D T tomogram

Stochastic EPM with three facies (karst,
fracture, bedding); 2D T tomogram for each
realization

2D fracture probability

3D K tomogram

2D K and Sg tomograms
2D K and Sg tomograms

3D D tomogram

3D interstitial velocity tomogram
2D K and Sg tomograms

2D K and Sg tomograms

2D K and Sg tomograms

2D fracture probability

(continued on next page)
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Site/Application

Study

Type of tomographic survey,
data for inverse problem

Inversion method

Inversion results

Cliffe et al. (2011)
Dodangeh et al.
(2023)

Dong et al. (2019)
Fischer et al.,

(2017a)

Fischer et al.,
(2018c)

Hao et al. (2008)
Jiang et al. (2023)

Klepikova et al.
(2013)

Le Goc et al. (2010)

Li et al. (2021)
Ma et al. (2020)

Mohammadi and
Illman (2019)

Ni and Yeh (2008)
Redoloza et al.
(2023)

Ringel et al. (2019)

Steady-state HT
Oscillatory HT and TT

Transient HT

Steady-state HT

Steady-state HT

Transient HT

Thermal TT and
microseismicity events
Drawdown and cross-
borehole flow tomography

Steady-state HT
Steady-state and transient HT

Transient production curves

Steady-state and transient HT

Transient PT

T

Transient HT/ TT
Transient HT

Basis Vector Conditioning/ Bayesian

Conditioning
Ensemble Kalman filtering

SimSLE

Cellular automata-based deterministic

inversion

Discrete deterministic network
inversion

SSLE

MCMC

Quasi-Newton optimization

Hierarchical optimization
SimSLE

Hierarchical parameterization,
optimization, history matching
SimSLE

SSLE

Genetic algorithm

T; of 3D fractures

Test case 1: Fracture location and aperture
Test case 2: Fracture density
2D K and Sg tomograms

2D T tomogram

T; and 2D DFN structure; 2D T distribution
of matrix

2D K and Sg tomograms

2D fracture probability

Tt of 2D connectivity structure between
injection intervals

T; of 2D flow channels
2D K and Sg tomograms

2D fracture probability

2D K and Sg tomograms

3D k and ¢ tomograms

Population of DFN models

Ringel et al. (2021)

Somogyvari et al. TT
(2017)
Vu and Jardani Steady-state HT

(2022)

. Steady-state HT
Vu and Jardani

(2023)

Wang et al. (2023)

Steady-state and transient HT

MCMC 2D fracture probability
MCMC 3D fracture probability and mean a¢
MCMC 2D fracture probability

Convolutional neural networks 2D fracture geometry

Convolutional neural networks 2D fracture geometry and T tomogram of

matrix

SimSLE 2D K and Sg tomograms

1996; Zha et al., 2015; Zhu and Yeh, 2005). The estimate of the condi-
tional mean parameter vector is updated iteratively according to the
misfit between measured and simulated data weighted by a coefficient
matrix. The coefficient matrix depends on the covariance and cross-
covariance matrix and is calculated by a first-order approximation of
the sensitivity of the simulated data to the current parameter estimate
(Yeh et al., 1996). Additional head or pressure signals can be included
either sequentially or simultaneously. The travel time inversion and the
geostatistical inversion as implemented by SimSLE are compared by Qiu
et al. (2023) for a heterogeneous synthetic test case. We refer to the
respective references for further inversion algorithms, i.e., to Cardiff and
Barrash (2011), Kitanidis (1995), and Tiedeman and Barrash (2020) for
the quasilinear geostatistical algorithm, to Blessent et al. (2011), Park
et al. (2004), and Wang et al. (2017) for the transition probability
geostatistical method, and to Dorn et al. (2013), Ringel et al. (2021), and
Somogyvari et al. (2017) for stochastic sampling methods, such as
Monte Carlo (MC) or Markov chain Monte Carlo (MCMC) sampling. The
parameter vector can be updated at specific time steps using techniques
such as Kalman filtering (Dodangeh et al., 2023; Panzeri et al., 2013) or
history matching (White, 2018) when new data is obtained.

3. Summary of tomography experiments and synthetic
applications

The overview in Table 1 compares different inversion methods for
the characterization of fractured media with an emphasis on the ob-
tained results. Table 1 demonstrates that most field studies rely on a

heterogeneous continuum inversion model which allows the evaluation
of distributions of porous media parameters as shown in Fig. 2a and 2c
for a fictious example in 2D and accordingly in 3D. The variance of the
tomogram of estimated parameters can be analyzed additionally in the
case of stochastic conceptual models which are the geostatistical
algorithms.

The field studies summarized in Table 1 are grouped in Fig. 3 ac-
cording to the scale and dimension of the investigated region and the
type of conceptual inversion model. Fig. 3 shows that most studies
applying a DFN model are smaller scale, while heterogeneous contin-
uum methods are larger scale, from decameters to kilometers. The to-
mograms of porous media parameters can be improved by the
incorporation of specific prior knowledge (Poduri et al., 2021; Zha et al.,
2017; Zhao et al., 2021) or through the analysis at high spatial resolu-
tion to distinguish between conduit and matrix elements in the tomo-
gram (Fischer et al., 2017b; Fischer et al., 2018b). Further information
about the fracture network can be gained by particle transport simula-
tions to investigate fracture connectivity (Tiedeman and Barrash, 2020)
or the comparison with forward simulations of synthetic test cases with
similar properties as the site (Sharmeen et al., 2012; Zha et al., 2015).

The studies applying a deterministic DFN model (Fig. 2b) estimate
less parameters of the fracture network than stochastic DFN models
since the stochastic approach can consider the non-unique relation be-
tween head or pressure signals and the hydraulic and structural prop-
erties of the DFN model. Klepikova et al. (2014) and Klepikova et al.
(2020) estimate transmissivity and storativity (Klepikova et al., 2020) of
predefined structures that connect the injection and observation
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Fig. 3. Differentiation of field studies (Table 1) according to the conceptual inversion model, the dimension, and the scale of the investigated region. Here, scale
refers to the maximum length of the evaluated tomogram of hydraulic or fracture parameters. The bars on the chart indicate the extent of the scale on which each

conceptual model was used.

intervals. Fischer et al. (2020) partition the investigated area in sub-
spaces and adjust the fracture properties in each subspace node-to-node
according to six predefined structure possibilities. In a second step, the
transmissivity of the fracture element is calibrated. Jalali et al. (2023),
Ringel et al. (2022), and Somogyvari et al. (2019) utilize MCMC sam-
pling to generate DFN realizations and estimate the number of fractures
and position and length of each fracture which are evaluated as map of
fracture probabilities (Fig. 2d). In these studies, the fracture shape is
simplified and the possible fracture orientations are limited to two
fracture sets according to borehole logs of fracture properties. In addi-
tion to the structural properties of fractures, Ringel et al. (2022) also
adjust the hydraulic aperture of each fracture.

4. Comparison between DFN and continuum conceptual models

In the following, we compare continuum and DFN models and
describe potential drawbacks and difficulties in the implementation of
the respective conceptual model based on state-of-the-art inversion al-
gorithms (Section 2.4) and the results of field, laboratory, and synthetic
studies (Table 1).

Heterogeneous continuum models result in smooth images of hy-
draulic parameters due to being representative of the hydraulic prop-
erties of fracture and matrix. For this reason, the continuum
representation provides good results for fractured rocks with a perme-
able matrix (Liu et al.,, 2022; Liu et al., 2023; Yang et al., 2020).
Moreover, Dong et al. (2019) demonstrate for three synthetic test cases
with an increasing fracture intensity that the accuracy of the K and Sg
tomogram and the validation, which is the prediction of observed heads
not used for the inversion, improves with an increased fracture intensity.
The authors also show that the predicted response can be overestimated
for receiver points not connected to the fracture network. Instead of
differentiating between the influence of single fractures and between
fractures and matrix, the specification of high and low conductive zones
of the investigated volume is potentially more important, especially for
large scale HT surveys. Therefore, continuum models have been
preferred for characterizing sites ranging from hundreds of meters to
kilometers in scale (Illman et al., 2009; Mao et al., 2018; Trabucchi
et al., 2022; Wang et al., 2021; Zha et al., 2015; Zha et al., 2016; Zha
et al., 2017). DFN models, except for Somogyvari et al. (2019), are not
applied at these scales, as shown in Fig. 3.

In contrast, the DFN conceptual model can delineate the strong

heterogeneity of the K and Ss distribution caused by the appearance of a
fracture network in rocks with a low-permeability matrix and on a small
scale of the investigated site (Fig. 3). The major drawback of the DFN
model is the definition of reasonable assumptions to reduce the number
of parameters to be adjusted by the inversion. For example, assumptions
regarding active and inactive fractures in terms of flow and transport
may need to be made. For this reason, the resulting DFN models are like
a projection of the real fracture network onto a lower-dimensional
subspace. For instance, Fischer et al. (2020), Klepikova et al. (2020),
Ringel et al. (2022), and Somogyvari et al. (2019) estimate constant
hydraulic properties within a fracture segment and the fracture shape is
simplified. Constraints regarding the DFN properties and especially a
fixed DFN pattern can lead to a less accurate geological model which
causes high errors when predicting independent validation results and in
general unrealistic parameter estimates. This is a more important issue
for deterministic DFN models since the number of parameters has to be
reduced for deterministic approaches to avoid an underdetermined
system of equations for the solution of the optimization problem. In
addition, the setup of constraints and simplifications is also more chal-
lenging over a larger scale. The fracture transmissivity is assumed to
depend on the hydraulic aperture according to the cubic law in Jalali
et al. (2023), Ringel et al. (2022), and Somogyvari et al. (2019). The
cubic law (Witherspoon et al., 1980) was derived by simplifying the
Navier-Stokes equations for small Reynolds numbers, which implies
viscous instead of inertial flow behavior, small changes of the velocity in
the fracture plane, and no velocity component normal to the fracture
plane (Zimmerman and Bodvarsson, 1996). Accordingly, the derived
transmissivity does not consider a varying surface roughness and contact
areas between the two surfaces even with a local cubic law assumption
(Berkowitz, 2002). The reliance of the transmissivity on the hydraulic
aperture can be avoided by estimating fracture conductivity and aper-
ture independently. However, that increases the size of the parameter
vector of the inversion problem by the hydraulic conductivity of each
fracture segment.

The application of a DFN conceptual model for fractured porous
media requires one to distinguish between the effects of fracture and
matrix on flow. This can be achieved by either reasonable estimates for
the initial values of the hydraulic conductivity of fracture and matrix or
by suitable upper and lower limits on both conductivities (Fischer et al.,
2020).

Overall, we conclude that the continuum representation is well
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suited where the influence of single fractures is small, which is the case
for high fracture densities, large scales, and fractured porous media. The
DFN model has advantages where the quantification of these effects is of
interest. Therefore, we recommend the DFN conceptual model on a
generally smaller scale and for a low-permeability rock matrix, such as
crystalline rock. The comparison is summarized in Table 2 by potential
target applications and difficulties of both conceptual models.

The computational costs of solving the inverse problem depend not
directly on the choice between a continuum or a DFN approach, but on
the implemented forward model and thereby, on the scale of the
investigated domain, the simulation time, and the temporal and spatial
discretization. Due to the explicit discretization of fractures in the DFN
model, the computational costs of the DFN model increase with fracture
density. The necessary number of forward simulations depends on the
convergence properties of the applied inversion algorithm. Travel time
inversion is an exception since this method is based on calculated travel
times through ray tracing instead of forward simulations. Because of
this, only the volume between boreholes can be characterized with the
travel time inversion algorithm (Brauchler et al., 2003; Qiu et al., 2023).

5. Summary and research directions

The inversion of HT and PT data to obtain an image of the subsurface
properties is an ongoing challenge with several possible directions for
future research. Generally speaking, there is no best conceptual model
that can handle all possible geologic applications and scales. However,
the advantages of the DFN and continuum conceptual models can be
combined, for example by locating potentially highly fractured zones
according to the zones in the tomograms obtained from a heterogeneous
continuum approach that indicate a high hydraulic conductivity or low
specific storage. Then, the properties of these zones can be inferred with
a DFN model to evaluate the fracture network further applying each
conceptual model at the scale where it is more suitable. In addition, the
hydraulic conductivity tomograms and the variance of the results as
obtained from stochastic inversion algorithms can be applied directly as
element-wise Gaussian prior distribution in the Bayesian equation or as
a proposal function for MCMC algorithms. This offers us an opportunity

Table 2
Overview of possible applications and drawbacks for continuum and DFN con-
ceptual inversion models.

Potential target Difficulties
applications
Heterogeneous Large scale Smooth tomograms
continuum High fracture density Hydraulic parameters
models representative of both fracture and
matrix
Fractured porous media
DFN models Small scale Simplifications concerning
fracture shape and distributions of
DFN parameters
Low-permeability rock Reliability of cubic law for
matrix estimating fracture transmissivity
Quantification of flow
properties of single
fractures
Heterogeneous Large scale Smooth tomograms
continuum High fracture density Hydraulic parameters
models representative of both fracture and
matrix
Fractured porous media
DFN models Small scale Simplifications concerning

fracture shape and distributions of
DFN parameters

Reliability of cubic law for
estimating fracture transmissivity

Low-permeability rock
matrix

Quantification of flow
properties of single
fractures
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for the joint inversion of discrete and continuum approaches.

The quantification of reliability and appropriate resolution of the
inversion results are still open questions (Illman, 2014). A direct eval-
uation of the error or visual comparison between the inversion results
and the reality is only possible for synthetic or laboratory test cases. For
field studies, the reliability and implementation of the applied inversion
method can be verified in general by developing the inversion algorithm
with several synthetic and laboratory test cases. The inversion results of
a field site can be validated by simulating the outcome of hydraulic,
pneumatic, or tracer tests that were not used for the solution of the
inversion problem and by comparing predicted and measured draw-
down, pressure change or tracer breakthrough data. However, the
simulation of tracer breakthrough data requires additional parameters
that are not estimated with HT or PT due to a different forward problem,
such as heat capacity or thermal conductivity for heat tracer tests. In
addition, the inversion results can be checked by comparison with other
studies and data (Illman et al., 2009; Ringel et al., 2022; Trabucchi et al.,
2022). Overall, the number of cross-hole pumping/injection tests, the
scale of the site, the size of the elements in the tomogram, and the
conceptual simplifications made in cases where a DFN model is applied
can all impact the reliability of the inversion results. A challenge for
future research is identifying the most useful additional information to
maximize the reliability of the tomogram of hydraulic properties or the
inferred DFN model, for example the best-suited complementary
geophysical method. The ideal field data to complement the tomo-
graphic methods discussed here will depend on the prior information
stage, the conceptual model of the tomographic inversion, and the scale
of the site. For instance, a geologic model of the site, geophysical
inversion results, or hydraulic parameter estimates from single-hole and
cross-hole pumping tests can be applied as prior distributions for HT or
PT inversion. Fracture properties as obtained by outcrops or optical or
acoustic televiewer logs can support the definition of reasonable con-
straints on structural parameters of fractures. Flowmeter and/or
groundwater temperature surveys can be conducted to identify active
versus inactive fractures. In porous media aquifers, cross-hole flowmeter
surveys have also shown to provide valuable information on connec-
tivity to improve HT estimates (Luo et al., 2023). These additional
studies can be used to confirm the general trend and the qualitative
hydraulic properties, but not the exact values of hydraulic parameters or
fracture probabilities. Moreover, for the DFN approach, the reliability
depends mainly on the simplification on the DFN structure to reduce the
number of unknown parameters.

The application of machine learning algorithms such as neural net-
works to HT is still in its early stages since machine learning has been
demonstrated only for 2D synthetic test cases. Deep learning algorithms
attempt to link hydraulic head measurements to fracture network pat-
terns (Vu and Jardani, 2022) and/or hydraulic parameters (Guo et al.,
2023; Vu and Jardani, 2023) through various neural network algo-
rithms. The algorithms require a large training dataset to handle data-
sets not covered during the learning phase. For example, Vu and Jardani
(2022, 2023) utilized neural networks to map a simple 2D fracture
network embedded in a heterogeneous aquifer through the inversion of
hydraulic head data obtained from a HT survey. In this synthetic study,
the authors demonstrated the potential for neural networks to map the
fracture network, but these studies rely on a dense network of obser-
vation wells which might not be available for many settings in practice.
Moreover, the accuracy of the approach depends heavily on the dataset
utilized during the training of the neural network, and the quality of the
results is still an open question, especially in practice with simplifica-
tions in the conceptual model or potentially insufficient boundary and
initial conditions applied for the forward simulations. Further work is
needed to make meaningful comparisons against existing inversion ap-
proaches and to evaluate if machine learning and traditional approaches
could be combined.

An important direction for future research is the applicability of the
inversion results to simulate and predict groundwater flow or
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concentration data independent of the pumping or tracer tests used for
the inversion and, in a next step, also to conduct coupled thermal-
~hydraulic-chemical-mechanical (THMC) process simulations. For
instance, hydromechanical (HM) simulations use DFNs generated ac-
cording to analogue or borehole mapping, statistical data, such as
fracture length, orientation, and location distributions, or geo-
mechanical DFNs (Lei et al., 2017), but no DFNs or tomograms of hy-
draulic properties inferred with HT or PT data are applied. Similar to the
validation of HT or PT inversion results with tracer tests, not all pa-
rameters necessary for these simulations can be estimated with HT or
PT. Because of the different forward simulation problem, one has to rely
on additional values from the literature or conduct further studies. The
precision of simulations or predictions based on inversion results is
highly dependent on the quality of the inversion results as described in
the previous paragraph. Furthermore, the accuracy of supplementary
values that are not estimated by HT or PT inversion must also be
considered. By employing stochastic conceptual models and by carrying
out simulations with different realizations of the parameter vector, we
can obtain an estimate of the uncertainty of the prediction. Another
point is selecting the appropriate conceptual inversion model based on
the scope of the simulation. When the contribution of the rock matrix
cannot be ignored, as in situations involving matrix diffusion, sorption,
or thermal conduction, a continuum model is favorable (Hadgu et al.,
2017). The opening of fractures and the increase of the fracture aperture
as relevant for geothermal applications can be modeled more directly by
the DFN conceptual model. A next step is linking the static character-
ization with HT or PT and the dynamic modeling and monitoring during
the operation. This allows for an update of the inversion results by real-
time or time-lapse inversion and, with the updated DFN parameters or
hydraulic properties, the in-situ optimization and control of the relevant
operation parameters.
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