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Stochastic Inversion of Three-Dimensional Discrete Fracture
Network Structure With Hydraulic Tomography
, and Peter Bayer!

Lisa Maria Ringel' (), Mohammadreza Jalali?

'Applied Geology, Institute of Geosciences and Geography, MLU Halle-Wittenberg, Halle, Germany, 2Department of
Engineering Geology and Hydrogeology, RWTH Aachen, Aachen, Germany

Abstract We introduce an approach for the stochastic characterization of the geometric and hydraulic
parameters of a three-dimensional (3D) discrete fracture network (DFN) and for estimating their uncertainty
based on data from hydraulic tomography experiments. The inversion approach relies on a Bayesian framework
and the resulting posterior distribution is characterized by generating samples by Markov chain Monte Carlo
(MCMC) methods. The inversion method is evaluated for four synthetic test cases related to the Grimsel

test site in Switzerland. Comparison of original and reconstructed DFN models shows that the presented
approach is suitable for identifying variable fracture locations and orientations. This is especially the case for
those fractures that represent the preferential flow paths in the simulated experiments. It is also revealed that
the Bayesian framework is useful to discriminate fractures based on the reliability of the inversion, which

is illustrated by fracture probability maps taken as sections through the studied rock mass. Moreover, it is
demonstrated that the hydraulic apertures can be calibrated together with the fracture geometries. A premise
for applicability in practice, however, is that the hydraulic measurements are complemented by additional
information to sufficiently constrain the value ranges of the geometric and hydraulic parameters to be inverted
together. The presented work expands the applicability of a previously presented promising two-dimensional
procedure based on transdimensional inversion to field-based 3D problems. The theoretical findings here open
the door for highly flexible structural characterization in practice based on hydraulic tomography, as well as
alternative or complementary tomographic methods.

1. Introduction

Groundwater flow through rocks with a low-permeability matrix is usually dominated by the presence of frac-
tures, associated with pronounced local permeability contrasts. Multiple connected fractures yield preferential
flow paths along a fracture network permeating the rock mass. Implemented in a model, the network is mostly
represented either by a single or multiple continuum method that translates the hydraulic properties of the frac-
tures into an upscaled effective permeability tensor or explicitly as a discrete fracture network (DFN). Combina-
tions of both methods are also possible, such as realized by the discrete fracture matrix model (Berre et al., 2019).
Dense fracture networks with many interconnections are more appropriate for the representation in a continuum
model. In contrast, if a few fractures dominate the hydraulic conditions, resolving the fractures explicitly in flow
models allows for a more detailed insight into preferential flow and transport paths, specific processes such as
flow focusing, spatial fracture connectivity, and quantification of the individual influence of single fracture pa-
rameters (Berkowitz, 2002; de Dreuzy et al., 2012; Hyman et al., 2019; Neuman, 2005; Roubinet et al., 2010; Yin
& Chen, 2020). Both variants are compared, for example, by Hadgu et al. (2017), in terms of effective permeabil-
ity and tracer breakthrough curves by simulating flow and tracer transport in benchmark test cases. The authors
conclude that because of the explicit representation of the DFN, this approach is better suited to represent the
structural heterogeneity of the DEN, insofar as the parameters of the network are well mapped. Proper mapping,
however, is challenging due to the limited insight into the studied rock mass.

Spatial reconstruction of fracture systems requires field investigation techniques that deliver meaningful space-de-
pendent information such as obtained by tomography. The underlying principle of tomographic methods is the
application and combined interpretation of signals sent from different sources and/or recorded at different nearby
receivers. Hydraulic tomography, for instance, is commonly based on multilevel pumping or slug tests with pres-
sure signals recorded in cross-borehole test configurations (Berg & Illman, 2011; Brauchler et al., 2003, 2013;
Cardiff & Barrash, 2011; Cardiff et al., 2013, 2020; Hu et al., 2011; Illman, 2014; Illman et al., 2009; Klepikova
et al., 2020; Laloy et al., 2018; Poduri et al., 2021; Sinchez-Leén et al., 2020a, 2020b; Sharmeen et al., 2012;
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Tiedeman & Barrash, 2020; Wang et al., 2017; Yeh & Liu, 2000; Zha et al., 2015; Zhao et al., 2019; Zhao &
Illman, 2017). This facilitates spatial resolution of aquifer heterogeneity by inversion procedures and further use
of reconstructed permeability patterns in flow models. Fractured systems have been addressed by hydraulic to-
mography as well as by other tomographic techniques, such as tracer tomography (Brauchler et al., 2013; Kittild
et al., 2020; Klepikova et al., 2014), stress-based tomography (Afshari Moein et al., 2018), or coupled inversion
of geophysical signals (Chen et al., 2006; Day-Lewis et al., 2003; Dorn et al., 2013). The interpretation of the
measured data is performed by a continuous representation of the porous or fractured media in most of these
previous studies.

An explicit representation of the fractured media as DFN was demonstrated mainly for two-dimensional (2D)
problems that neglect the role of structural variations in the third dimension (Fischer et al., 2020; Ma et al., 2020;
Somogyvari et al., 2017; Tran & Tran, 2007). Three-dimensional (3D) inversion problems applying data from to-
mographic experiments are more challenging and have been handled primarily by continuous inversion methods.
These provide tomograms of continuous hydraulic conductivity distributions (Cardiff & Barrash, 2011; Cardiff
et al., 2013, 2020; Tiedeman & Barrash, 2020) and hydraulic conductivity together with storativity distribu-
tions (Berg & Illman, 2011; Illman et al., 2009; Sanchez-Ledn et al., 2020b; Zha et al., 2015; Zhao et al., 2019;
Zhao & Illman, 2017). Promising alternatives rely on the simplification of the inversion problem by prescribing
selected characteristics of the main flow paths between two boreholes (Klepikova et al., 2020); they focus on
critical hydraulic aspects such as the role of a leakage interface (Wu et al., 2020) or the aperture distribution (Wu
et al., 2021). In this context, multifidelity approaches can strike a balance between the accurate representation of
3D DFNs and simplifications of the inversion problem to improve the computational efficiency of modeling the
tomography experiment (O’Malley et al., 2018).

In our study, we present a full 3D tomographic fracture network inversion. Based on promising previous work in
2D (Ringel et al., 2019; Somogyviri et al., 2017), the geometrical properties of fractured aquifers are represented
by a flexible 3D DFN structure that is iteratively calibrated to the data from tomographic measurements. Related
studies on the direct inversion of 3D fracture networks generate DFNs and condition them to geophysical and
hydrogeological data (Dorn et al., 2013) or fit a random number of fractures intersecting the boreholes (Mardia
et al., 2007). Our objective is to develop an inversion technique that adjusts the structure and organization of
fractures as flexibly as possible. Moreover, a stochastic characterization of the structural properties is also chosen
to account for the uncertainty in the results, as field data is often insufficient for unequivocal model inversion.

In the following, the forward and inverse modeling procedures used for simulation of DFNs will first be de-
scribed. We refer to a synthetic hydraulic tomography experiment, which is treated as virtual reality to inspect
and demonstrate the capabilities of the developed inversion method. This analysis is based on four different ex-
perimental variants to test inversion performance and limitations.

2. Methodology

The overall principle of the presented procedure is using tomographic information to infer as much 3D structural
characteristics as possible of a fractured rock mass on the decimeter scale. In this study, a hydraulic tomography
setup is chosen that is based on multilevel hydraulic pumping tests in boreholes with different orientations. The
recorded pressure responses from multiple tests in these boreholes reveal the existence and degree of hydraulic
connections within the fracture network of the rock mass. By simultaneous fitting of a DFN model to all recorded
pressure responses, preferential flow paths and thus, hydraulically active fractures can be localized. While there
exist different methods to calibrate the DFN to such hydraulic signals or tracer and geophysical information, they
are commonly based on limiting assumptions (e.g., a priori fixed fracture locations). Our purpose is to minimize
such assumptions except for a conceptual model of given fracture sets, which is formulated based on the prop-
erties of fractures along boreholes or outcrops. This means, for a given fracture set, realistic ranges of fracture
geometric and hydraulic parameters are predefined. Within this framework, fracture numbers, their locations,
lengths, and hydraulic properties are treated as unknowns and are calibrated.

Flexible 3D adjustment of fracture geometries is ideally accomplished by an iterative learning procedure, which
calibrates the model to independent measurements. Considering conditions in practice, we assume that there ex-
ists a basic geological insight in typical fracture orientations, density, and a range of possible hydraulic aperture
values. Exact structures, however, are unknown, and the prior geological knowledge is exploited together with
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hydraulic test data to infer potentially valid DFN configurations. Typically, outcrops or properties of fractures
along boreholes are investigated to define a conceptual model and for the setup of the inversion problem. A proper
framework for probabilistic processing of such soft and hard data follows Bayesian principles, which is consid-
ered here. Bayesian inversion is accompanied by a high computational demand for iterative comparison of model
predictions with measurements, which may require many thousands of model runs. To minimize the simulation
time for the forward model, an unsophisticated DFN fluid flow model has been set up to simulate hydraulic tests
in fractured aquifers with variable fracture orientations. This is described in the next chapter as the forward model
concept of this study. After this, the inversion algorithm and its implementation with test cases are described. Dif-
ferent test cases are used to examine the applicability of the tomographic inversion. Here, specifics of the exam-
ined hydraulic problem, the parameters treated as unknowns, as well as the prior information will be explained.

2.1. Forward Modeling of Hydraulic Tomography Experiment

Fractures are modeled as lower-dimensional objects with a uniform aperture, assuming a constant pressure gra-
dient normal to the fracture plane due to the small aperture. Fluid flow in a single fracture is described by the
continuity equation and the cubic law derived by simplifying the Navier-Stokes equations (Berre et al., 2019;
Zimmerman & Bodvarsson, 1996)

aps% v, - (apk—fva) =4 M
ot U

with the hydraulic aperture a [m], the density of the fluid p [kg/m?], the specific storage S [1/Pa], the fracture

permeability kf [m?], the fluid dynamic viscosity u [Pa s], and a source/sink term g [kg/m?s]. The pressure p [Pa]

refers to the static pressure and the piezometric pressure due to gravitational forces. The gradient V.is performed

in the local coordinate system tangential to the fracture plane.

In this study, the equations are solved by the finite element method (FEM) with a conforming discretization at
the intersections of different fractures. For further reading on the FEM fundamentals, we refer to related liter-
ature, for example, Reddy and Gartling (2010), Zienkiewicz et al. (2014), and Langtangen and Mardal (2019).
For conciseness, only the methodology that is specific to the present study and the evaluation of the results are
explained in the remainder.

The geometry and mesh generation is implemented by the open-source mesh generator Gmsh (Geuzaine & Rema-
cle, 2009). Each fracture can be created separately according to its properties, with the built-in geometry module
as ellipse arbitrarily positioned in the investigated volume. The intersections of different fractures are considered
by the so-called Boolean fragment operation implemented in Gmsh. This function provides a conforming discre-
tization at the interfaces of fractures. The fractures are implemented as shell elements, as suggested by Reddy
and Gartling (2010), for heat transfer problems with a constant temperature across the element thickness. This
allows the reduction of a 3D fracture to a 2D plane without losing information about the properties normal to the
fracture plane.

To verify our implementation, 2D and 3D scenarios have been defined in a preliminary analysis. For each sce-
nario, there are analytical solutions or estimates of the expected results available. The 2D problems apply to the
general behavior of the implementation of the FEM simulation concept. Therefore, the scenarios are specified by
the method of manufactured solutions and the convergence of the numerical solution to the defined solution is
evaluated for different basis functions and mesh resolutions (Langtangen & Mardal, 2019). This demonstrates the
correct calculation of the pressure diffusion within a single fracture midplane and the accurate implementation of
the boundary conditions. The 3D scenarios are designed to check those characteristics of flow in a DEN that are
essential to providing physically meaningful results. That is, the reduction of the dimension by the shell elements,
the quality of the results depending on the basis functions and the mesh resolution, and the balance of fluxes at
the intersections of fractures for different apertures and fracture lengths. To consider more complex physics, the
forward model may be replaced by any other DFN simulation tool that allows for automatic updating of the DFN
structure (Hyman et al., 2015; Keilegavlen et al., 2021).
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2.2. Inversion Methodology

The method for the inversion of the DEN structure, that is, the estimation of the model parameters given the ob-
served hydraulic data, is based on the Bayesian approach

p(0]y) o« p(y|0)p(0) 2

that evaluates the posterior probability p (6|y) of the parameters of the DFN model given the results from the to-
mography experiment. In this study, the parameters 0 to be inferred are the properties of the DFN. The parameters
are treated as random variables that are characterized by probability density functions. The data y stems from the
hydraulic tomography experiment, that is, the pressure perturbations provoked by an overpressure created at the
injection points. The posterior distribution is based on prior information p (9) about the position and the proper-
ties of the fractures and the likelihood of the data p (y|6) (Gelman et al., 2013). The likelihood function evaluates
the error between the measured data and the simulated results from the corresponding hydraulic tomography
experiment. In the subsequent application to different test cases, we assume independent and identical normally
distributed errors for the time steps of each pressure signal. Therefore, the log-likelihood function is proportional
to the sum of the squared error over all data points N,

Ndata

log p(¥10) —2—;2 Z} i = £ O 3)

whereby f (0) refers to the simulation of the forward model for a given DFN parameter set 6.

Evaluating the posterior distribution is a challenge due to its complexity and its typically high dimensionality. A
widely used method to handle this problem is to characterize the posterior by drawing samples from the posterior
distribution according to the Markov chain Monte Carlo (MCMC) sampling strategy. Starting from an initial
state, new samples 6’ are proposed in each iteration i according to a proposal distribution ¢ and are accepted
(0, = 0") with probability

. p(0'1)q(0;-110")
= 1, ———\J| ),
o= < (01 |y)q(9’|0,-_1)| l) @

or rejected (0, = 0,_). The determinant of the Jacobian matrix IJI holds for a generalization of the update proba-
bility. It equals one for updates that do not change the number of parameters. For transdimensional update types
that include adding or deleting parameters, the Jacobian provides a relation between the already existing and to
be added or deleted parameters. The tolerance for accepting a DFN realization depends on the update probability
(Equation 4). A high update probability implies, in most cases, that the proposed realization (6’) has an equal
or greater posterior compared to the current DFN realization (6,_,), that is, the error between the simulated and
measured data is the same or smaller and that it meets the prior distribution. Proposed realizations outside of the
prior limits are rejected outright.

The reversible jump MCMC (Fan & Sisson, 2011; Green, 1995; Hastie & Green, 2012) is applied due to the ad-
vantage that the number of parameters, in this case, the number of fractures, does not need to be known a priori.
Instead, the number of fractures and the structure of the DFN are adjusted iteratively during the inversion. This is
accomplished by switching between two update types (Fan & Sisson, 2011). The number of parameters is inferred
by so-called between-model moves. In this case, the number of parameters is varied by inserting a fracture in a
random position within the investigated volume or by deleting a randomly chosen fracture. Since the insertion
of a fracture, in our implementation, is just an addition of parameters that are not linked to the parameters of the
other fractures, the Jacobian is equal to 1 (Sambridge et al., 2006). The Jacobian of the reverse update type, that is,
the deletion of a fracture, is the inverse of the reverse update, and therefore, it is also equal to 1. The parameters of
the DEN for a given number of fractures are adjusted by updating the position, the fracture length, or the fracture
aperture. Since the number of parameters does not change, this is described as a within-model move. The param-
eters are varied by perturbing the current value with a sample from a normal distribution with zero mean and a
given variance, which is the most common proposal distribution. In practice, this procedure is implemented by
alternating between both update types. The MCMC iterations are initialized by a random DFN realization based
on the prior information and the DFNs are adapted iteratively to meet the posterior distribution. An overview of
the rjMCMC algorithm and the workflow, as it is implemented for the DFN inversion, is illustrated in Figure 1.
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Figure 1. Overview of the implemented rjMCMC sampling strategy for the discrete fracture network (DFN) inversion with
the between-model moves (insertion or deletion of fractures) and the within-model move, that is, the update of the DFN
parameters.

The update type is chosen randomly and, in our implementation, for simplicity reasons, no update types are com-
bined. During the burn-in iterations, we found that the efficiency of the algorithm can be improved by raising
the probability for those update types that change the number of fractures, that is, insertion or deletion. When the
number of fractures reaches the maximum possible number of fractures, the probability for insertion is set to zero.

As further advancement of our previous studies (Ringel et al., 2019; Somogyvéri et al., 2017), the insertion of
fractures is possible at any position in the investigated volume, that is, fractures do not necessarily have to be con-
nected to the main DFN. In comparison, this provides two main computational advantages. The influence of the
initial DFN configuration is lower, and this ensures that more possible DFN realizations are included. Moreover,
a fracture without a connection to the main DFN has no hydraulic effect and thus does not change the outcome of
the hydraulic tomography simulation. Therefore, considering only the likelihood of this update, the insertion will
most probably be accepted. Nevertheless, this realization is part of the posterior and has to be considered to en-
sure reversibility and stationarity of the Markov chain. Deletion of the same fracture will most likely be accepted
for similar reasons, insofar as no new connection to the main DFN has yet been formed. In practice, fractures are
inserted randomly within a given domain Ax, Ay, Az (Figure 1). Aside from that, the update of the fracture length
and the hydraulic aperture has been included in the inversion framework to improve the sampling efficiency, since
this also allows the consideration of more possible DFN realizations.

2.3. Setup of Test Cases

To check the applicability of the proposed methods, we employ four synthetic test cases (Table 1). The use of
synthetic, perfectly known conditions, allows for evaluation of the performance of the inversion procedure, to
detect difficulties that could cause errors in the inversion results, and to derive conclusions for measurement
data requirements and field applications that are suitable for our inversion approach. In each test case, hydraulic
tomography experiments are simulated by creating a constant overpressure sequentially at different cross-well
injection positions. The induced transient pressure perturbations at the injection points are recorded at receiv-
er points in adjacent observation boreholes and normally distributed noise is added to the data to account for
measurement, modeling, and conceptual errors. The noise is applied to affect the pressure signals, nevertheless,
without concealing the main trend of the signals (Klepikova et al., 2020). The standard deviation of the noise is
approximately 3% of the mean pressure.
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Table 1
Overview of the Characteristics of Each Test Case
Test case Settings Objective
1 Based on measurements at the Grimsel test site Applicability of the inversion method to realistic
geological formations
2 Update of the hydraulic aperture by the inversion algorithm Applicability of the inversion method to identify fracture
geometries and hydraulic apertures
3 Insertion of an additional injection point Sensitivity of the results to the number of constraints
4 Definition of a third fracture set Applicability of the inversion method to an extra fracture

set and handling of more possible flow paths

To refer to a realistic geological formation, a base case (test Case 1) is developed utilizing data from hydraulic

characterization campaigns during the in sifu stimulation and circulation (ISC) experiment at the Grimsel test
site in Switzerland (Amann et al., 2018; Doetsch et al., 2019; Krietsch et al., 2018). Nevertheless, the present
analysis is only theoretical and the fractures of the base case are considered to be perfectly known. The insight

from the Grimsel test site helps to define reasonable assumptions for the setup of the conceptual models and the

prior parameter distributions. The fractures forming the DFN of the base case, as well as the boreholes for simu-

lating a cross-hole hydraulic tomography experiment are presented in Figure 2a. The injection boreholes and the

properties of the fractures with the center connected to the boreholes are oriented at observations from optical
televiewer tests conducted during the ISC experiment (Doetsch et al., 2019; Krietsch et al., 2018). The position of
the fractures connecting the boreholes and the length of all fractures are based on the connectivity matrix given

in Jalali et al. (2018). The DFN is built up by two fracture sets. The inclination and dip assigned to the fractures

are the mean of the fracture sets defined according to the fractures intersecting the boreholes. This tomographic

setup yields 5 source/receiver (S/R) points, which means that the constant pressure injection tests are simulated

sequentially at each position in the well and the arrival of the pressure signals are recorded at the other source/

receiver points functioning as observation locations. The data assumed to be measured during the hydraulic to-

mography experiment is shown in Figure 2b.

The potential of adjusting the hydraulic aperture within a given range is investigated by test Case 2. For compar-

ison of the results with the base case, we apply the same DFN setup and the same tomographic test configuration

(Figure 2). In contrast to the previous test case, the aperture of the fractures is assumed unknown within given

value ranges. Therefore, the aperture values are estimated as part of the parameter update of the inversion algo-

rithm (Figure 1). In this exemplary test case, the range of possible hydraulic aperture values is set to +80% of the

given value in test Case 1, which is implemented as prior bounds.
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Figure 2. (a) Synthetic test Case 1 (base case), boreholes, and source/receiver points denoted as S/R 1 to S/R 5. Fractures whose properties are assumed to be unknown
are illustrated in lighter gray. (b) Pressure signals recorded at the different receiver points (R 1 to 5) provoked by an overpressure created at the source points (S 1 to

5). The pressure signals result from the forward simulation of the hydraulic tomography experiment with normally distributed noise added and function as basis for the
inversion of the discrete fracture network (DFN) properties. The black curves indicate the mean of the simulated pressure signals of the posterior DFN realizations.
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Figure 3. (a) Test Case 3 oriented at the base case with an extra injection point fracture and an additional source/receiver point (S/R 6). (c) Test Case 4 including
a third fracture set and an additional source/receiver point (S/R 6). Fractures whose properties are assumed to be unknown are illustrated in lighter gray. The noisy
pressure signals and the mean of the simulated pressure curves of the posterior DFN realizations are displayed for both test cases in (b) and (d).

To examine the capabilities of the inversion methodology further, the base case (1) is extended. The third test case
(3) is designed to check the sensitivity of the inversion algorithms to modifications of the DFN and to the number
of available pressure signals. Therefore, a new fracture is added with a connection to a borehole to provide an-
other source/receiver point (S/R 6). The additional fracture is placed in the lower part of the investigated volume
and shifted backward. Since this fracture is presumably connected to a borehole, its position and the associated
fracture set are given. Hence, this variation of the test case contributes information about the lower part of the
DEFN in the studied rock mass and the parameters normal to the plane defined by the injection boreholes. This
test case is illustrated in Figure 3a. The tomographic setup is the same as before but with an additional source/
receiver point (Figure 3b).

Test case 4 (Figure 3c) examines the ability of the inversion method to deal with a (theoretical) third fracture
set. The third fracture set is defined by a rotation angle around the x-axis. To infer the properties of this DEN,
an additional source/receiver point (S/R 6) is favorable to compensate for the uncertainty due to the additional
possible rotation around the x-axis. Therefore, in this case, the tomographic setup is the same as for the previous
test cases. By inserting the additional fractures, a unique feature of this third case is that more possible flow paths
exist connecting the source/receiver points. Therefore, the rationale of the case is to reveal how the inversion
procedure can deal with a potentially higher number of suitable solutions.

2.4. Implementation of Inversion

Constraints, assumptions, and prior distributions for the formulation and implementation of the inversion prob-
lem are mainly based on the information about the fractures connected to the boreholes. An overview of the
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Table 2

Steps Required for the Setup of the Inversion Problem, and Parameters Estimated by the Inversion

Properties

Information source/assumptions

1. Basic information

Coordinates of fractures intercepting boreholes

Angles of fractures intercepting boreholes

2. Conceptual model Fracture shape

Fracture sets

Specific storage
Hydraulic aperture

3. Prior distribution

Minimum and maximum possible values for the parameters of the fractures

Upper limit for the number of fractures

4. Likelihood function

5. Estimated parameters

Transient pressure signals provoked by perturbations of the system

Cores, geophysical logs (e.g., optical or acoustic
televiewer)

Cores, geophysical logs (e.g., optical or acoustic
televiewer)

Plane ellipse with a uniform aperture; length of
minor axis is half of length of major axis

Properties of fractures along boreholes (cores,
geophysical image logs) or based on outcrops

Crosshole in situ tests, laboratory tests
In situ hydraulic tests or estimated by inversion
Field investigation and/or outcrops

Fracture intensity map derived from outcrop,
cores, and geophysical logs

Crosshole in situ hydraulic tests

Number of fractures, coordinates, and length of fractures between boreholes, length  rjMCMC inversion algorithm

of fractures along boreholes, hydraulic apertures based on fracture sets

Table 3

underlying assumptions, the necessary information for the derivation of a conceptual model, the properties of the
prior and likelihood distribution are summarized in Table 2. Table 2 follows the steps for the setup of an inversion
problem. The basic information, essentially, borehole data or outcrops, is applied for the derivation of a concep-
tual model and the definition of the prior distribution. The measured data from the hydraulic tests are included as
likelihood function. Relying on these sources and assumptions, several parameters of the DFN can be estimated
by the inversion algorithm.

The parameters selected for the test cases of this study are listed in Table 3. Hydraulic apertures are assigned as
fixed values based on the fracture sets for test Cases 1, 3, and 4, while the aperture is estimated within the exem-
plary prior bounds in test Case 2. The shapes of the fractures are approximated as plane ellipses with a uniform
aperture. Most of the flow occurs directly between intersections with other fractures. Therefore, no sharp edges
have to be considered for the simulation of flow. This makes the ellipses a reasonable assumption, but does not
account for the potential existence of nonuniform apertures or channelized flow along fractures. The length of
the fracture refers to the major axis and the ratio to the minor axis is given by the conceptual model. In this setup
of the inversion, the hydraulic conditions in the boreholes are not resolved. Instead, we assume that the injection
points can be isolated perfectly by the packer systems.

We apply a uniform prior as a lower and upper limit for the unknown parameters, that is, for the coordinates of the

center of each fracture and the fracture length. The characterization of the error between simulated and measured

data by estimating its standard deviation can be utilized to quantify uncertainties of the conceptual model, for
example, deviations from the fracture sets or the assumed fracture shape, for
resolving inconsistencies of conceptual model assumptions with respect to
field conditions.

Parameter Settings of the Inversion Model

Parameter

Fracture Fracture Fracture

2.5. Evaluation of the Results

bl ) bt During the MCMC search, initially tested DFN configurations and the fol-

Hydraulic aperture

Inclination (Rotation around y-axis)

Dip (Rotation around z-axis)

Rotation around x-axis

Specific storage

6-10°m 8-10°m 6-10°m

lowing sample realizations proved unsuitable for the posterior distribution,

167.9° 56.7° since the misfit between the simulated and the measured pressure signals is
65.9° 90° relatively high due to inexact connections between the boreholes. Therefore,

oo samples from the beginning of the MCMC procedure are discarded as burn-

o oo in realizations. Assuming that little is known about the posterior distribu-

tion, the evaluated results originate from different initial DFN configurations
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drawn from the prior distribution. This avoids getting stuck in local modes of the posterior distribution and
respectively prevents the results from only partially covering the posterior. To reduce the autocorrelation, only
every nth iteration is kept for the evaluation of the results, which is called thinning (Brooks et al., 2011).

The DFN realizations, that is, the samples from the posterior distribution, obtained by the ;jMCMC algorithm,
are evaluated as fracture probability maps (FPMs). Due to the changing number of parameters, single fractures
and their influence are difficult to distinguish from each other and, therefore, FPMs are a more suitable evalua-
tion method than, for example, histograms on individual fracture statistics. Since a fracture can be inserted at an
arbitrary position in the investigated rock volume, a new fracture is not necessarily connected to the main DFN.
Therefore, unconnected fractures, that is, fractures without influence on the flow, are discarded for the generation
of the FPM. Similar to the mesh generation, the function Boolean intersection by the mesh generator Gmsh is im-
plemented to detect unconnected fractures. The FPM is evaluated by generating a raster of each DFN realization
and taking the mean of all DFN realizations. Thereby, the FPM presents the sample mean for each volume of the
raster to be a part of a fracture, which is interpreted as fracture probability. The updates of the fracture aperture
are evaluated on the same raster over the investigated volume. If an element of the raster is part of the DFN, the
corresponding aperture is selected from the explicit representation of the DFN. This is used to calculate the mean
fracture aperture of each element of the raster.

3. Results
3.1. Test Case 1

The rjMCMC samples are evaluated as FPM presenting the mean over the DFN realizations. In Figure 4b, the
FPM derived for the base case is illustrated in different cross sections for constant values y. For better comparabil-
ity of the results with the test case, a raster of the synthetic DEN is generated with the same resolution as the FPM
(Figure 4a). Fracture probabilities below 10% are neglected for the sake of clarity of the visualization. Note that
the bounds of the modeled domain are greater than what is presented in Figure 4 and some fractures can partially
extend over the bounds of the displayed volume.

In general, the shown cross sections reveal fractured and non-fractured areas. The main characteristics of the
inverted DFN are precise and accord with the synthetic test case. This illustration of the results also indicates
which parameters of the DFN can be inferred with certainty or uncertainty by the inversion algorithm. Parameters
that are well constrained by the hydraulic tomography experiment can be estimated properly, while parameters
that have only a small effect on the pressure signals occur with a broader range of possible values. The fracture
connecting the fractures from injection borehole 2 (Figure 2a) with the right part of the investigated volume has a
direct influence on the pressure signals, therefore, only small deviations from the mean position are possible. Oth-
erwise, the error would be too large, that is, this realization would be less likely. The hydraulic effect of the other
fractures on the flow is lower and thus larger fluctuations around an expected value are possible in the inverted
results. In particular, the y-coordinates of all fractures are not well determined, instead, they can move quite freely
on the x-z-plane. The effects of varying the length of all fractures are visible by the lower fracture probabilities
at the end of each fracture. More pressure signals are available for injection borehole 2 than for borehole 1. The
combinations of source/receiver 3, 4, and 5 among each other allow the expected fracture length of the fractures
connected to injection borehole 2 to be well determined, and fewer deviations are possible compared to the frac-
ture lengths at injection borehole 1 (Figure 2a).

Figure 2b shows the mean of the simulated pressure signals of the posterior DFN realizations compared to the
pressure signals that function as basis for the inversion. Since the conceptual model coincides with the setup of
the test cases, the mean signals accord well with the measured signals. For the inversion of field data, further
parameters like the error variance or quantiles of the simulated data can be evaluated to consider uncertainties in
the conceptual model. For the synthetic test cases of this study, the uncertainty of the data and the results correlate
with the scale of the noise added to the pressure signals. If the approximate number of fractures can be evaluated
based on the FPM, application of MCMC algorithms that require the number of fractures to be given can provide
additional insight into the DFN parameters and their correlations. Results from such inversion setups with a con-
stant number of fractures are available in the supplement. In general, the results from the inversion setup with a
fixed number of fractures agree with the presented rjMCMC results, which serves as a confirmation of the results.
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Figure 4. (a) Rasterized test Case 1. (b) Inversion results illustrated as FPM presented for constant positions y (as illustrated at the upper right together with the size of

the evaluated volume).

However, due to the uncertainty about the number of fractures in a rock mass, in practice, a transdimensional
implementation is favorable for the first step of inversion.

3.2. Test Case 2

This test case expands the previous base case by coupled inversion of likewise hydraulic apertures. The latter are
inverted within a range of possible values based on the fracture sets.

The obtained fracture probability (Figure 5a) and the sample mean of the hydraulic aperture of each element of
the raster are evaluated in Figure 5b. Fracture probabilities below 10% are not displayed in the FPM. Accordingly,
no aperture value is given, since a reasonable estimate of the mean aperture is not possible for these elements.

In general, the overall uncertainty of the results is increased due to the estimation of an additional parameter of
each fracture. In comparison to the previous results (Figure 4), more raster elements with low fracture probabil-
ities and probabilities below 10% exist and the resolution of the FPM is lower. As a whole, the fracture aperture
correlates mainly with the number of fractures and the position of the other fractures. For example, more fractures
in parallel with a small distance, can compensate for an underestimated aperture at the same position. Howev-
er, the separate effect of the inverted parameters of the DFEN even representing a similar position is difficult to
quantify.

Despite the coarse resolution of the FPM, the results in Figure 5 facilitate the following conclusions regarding
the properties of the DFN: The horizontal connection in the upper part of the investigated volume is apparent and
the mean aperture value accords approximately with the aperture from the setup of the test case. In contrast to the
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Figure 5. Inversion results of test Case 2 evaluated as (a) fracture probability map and (b) mean aperture of each element. We refer to Figure 4a for comparison with
the rasterized test case and for the size of the displayed volume.

previous results with a fixed hydraulic aperture (Figure 4), more DFN realizations appear in the lower part of the
domain. And analogous to this, new intersections of the fractures of the different fracture sets are found suitable.
This shows that the given tomographic data and prior information are not sufficient for reliable reconstruction
of the given DFN of test Case 2. While the inversion result comes close to the original DFN, the additional flex-
ibility of calibrating the hydraulic aperture offers more freedom and allows more diverse candidate solutions.
Obviously, such findings are still useful, especially when judging the suitability of different field data, and for de-
riving strategies of optimized additional field surveys or data requirements to better constrain the DFN inversion.

3.3. Test Case 3

In test Case 3, the role of a modified tomographic setup is examined with fixed apertures. Once again, using
the base case as reference, an additional injection point provides more tomographic information. In general, the
inversion results obtained by the rjMCMC algorithm demonstrate that it is possible to constrain the properties of
the fractures by the extra injection point (Figure 3a). Figure 6b indicates that the resolution of the inversion results
is better in contrast to results from the base test case presented in Figure 4.

Due to the additional source/receiver point in the lower part of the investigated rock volume, the fractures in
this part cause a more direct influence on the fluid flow in comparison to the previous base case. Therefore, the
uncertainty of the inversion results is generally reduced. The fracture of fracture set 1 with the connection to S/R
6 exhibits less variance from the mean position compared to the initial setup given by the base case. The fracture
of the second fracture set, which connects the two fractures of the first set, respectively the upper and the lower
part of the investigated rock volume, also deviates only slightly from the mean position. Since S/R 6 is shifted
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Figure 6. (a) Rasterized test Case 3. (b) Inversion results illustrated as FPM for different cross sections for constant values y. Fracture probabilities below 10% are

neglected.

backward (Figure 3a), this setup of the test case also enables better constraint of the y-coordinates of the center
of the fractures. This also clarifies that it would not have been possible to reduce the inversion to a 2D problem
without disregarding information on the 3D properties of the DFEN. This example demonstrates that the results for
test Case 1 can be used to infer a suitable location for additional S/R points. Assuming no practical restrictions
for the insertion of S/R points, the best effect could be achieved by placing it at positions where the resolution of
the FPM is lowest.

3.4. Test Case 4

In this case, the inversion result is obtained with a higher uncertainty compared to the previous examples. The
accuracy of the inversion results is also lower. This originates mainly from the rotation around the x-axis accord-
ing to the third fracture set and more possible flow paths due to more fractures, which leads to more uncertainty.
However, a few useful conclusions about the structure of the DFN can still be drawn from the inversion results.
The FPM is shown for different cross sections in Figure 7b.

The fractures of the third fracture set, readily identifiable by the straight line, are located in the upper part of
the investigated rock volume, which coincides with the setup of the test case (Figure 3c). The FPM also reveals
the appearance of fractures in the lower part, although the expected position is more difficult to determine. Es-
pecially the y-coordinate of the fractures is hard to specify more precisely. Obviously, there is not enough data
available for reliable inversion. The resolution of the inversion results could, however, be improved by more prior
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Figure 7. (a) Rasterized test Case 4. (b) Inversion results illustrated as FPM presented for different cross sections for constant values y. Fracture probabilities below

10% are neglected.

information such as from other measurements or an additional source/receiver point in the lower part of the in-
vestigated volume similar to the one for the second test case.

3.5. Comparison of the Results for All Four Test Cases

We apply around 1,500 posterior samples for each test case to generate the FPM after discarding the burn-in
iterations (approximately 40,000 depending on the initial guess and the proposed updates), and after thinning
the posterior realizations (we keep every 100th iteration). Altogether, that is a rather conservative approach.
However, that should ensure the representation of all possible DFN realizations to provide reasonable estimates
about the uncertainties of the parameters. In general, it is a complex process to determine if the DFN samples
capture the whole posterior distribution. We circumvent this issue by comparing and summarizing the results
from different initial guesses as starting points of the inversion. If the results are similar or recurring, it is a good
indication that the procedure can be terminated. This procedure will become even more important when dealing
with real measured data.

Comparing the results from the base case and test Case 3, an extra source/receiver point provides sufficient data
to better resolve the inversion results, respectively reducing the uncertainty. However, this also has the effect that
the algorithm is more prone to get stuck in a local minimum during the burn-in phase if only a part of the pres-
sure signals is met. Therefore, test Case 3 requires more burn-in iterations than the other examples. In contrast
to this test case, test Case 4 demonstrates that more available flow paths decrease the impact of a single fracture
on the pressure signals and therefore, reduce the accuracy of the results. This is comparable to the findings with
a flexible aperture value as tackled by test Case 2. Here, the greater flexibility and thus expanded mathematical
decision space facilitates more suitable DFN variants as solutions. This is as expected and thus reflects a good
performance of the rjMCMC procedure.
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4. Conclusions and Outlook

In this study, we applied a Bayesian framework and the rjMCMC sampling strategy to flexibly calibrate the pa-
rameters of a 3D DFN to data from hydraulic tomography and to adjust to prior information. This is accomplished
by representing and inferring, in particular, the geometrical properties of the DFN explicitly. The main advantage
of the stochastic inversion procedure is the generation of a set of possible DFN realizations that are approximately
equally likely. This facilitates being able to distinguish between parameters or fractures that are identified with
higher or lower certainty. The inversion results for the synthetic test cases demonstrate the capability of charac-
terizing the main flow path between the source/receiver points, as this has the greatest influence on the outcome
of the hydraulic tomography experiment. The properties of the other fractures, whose contribution to the pressure
signals is less, are subject to higher uncertainty, that is, the resolution of the inversion result is lower. Despite the
higher uncertainty, the existence of such fractures is substantiated and can be further analyzed by introducing
additional information, for instance, by complementary field investigation.

In one test case, the estimation of the hydraulic aperture is integrated in the inversion algorithm as part of the
parameter update of the DFN. However, future research is required on the evaluation of the results, mostly con-
cerning the correlation of the hydraulic aperture with the position and number of fractures. Also, the overall
performance of the ryMCMC algorithm and the possibilities regarding the evaluation of the results could be
improved by defining two additional update types, like merging nearby fractures and for the reversibility of the
chain splitting fractures. These update types could provide a better estimate of the effect of a single fracture and,
therefore, offer additional options for the evaluation.

The same inversion framework and MCMC algorithms can be applied to the characterization of DFNs in com-
bination with different forward solvers to consider either more complex physics like coupled flow and transport
processes or different sources of measurement data, for example, data from tracer or stress-based tomography.
Further information about the DFN, for example, from geophysical measurements or results from continuous in-
version, can also be used in the flexible Bayesian framework as prior distribution to be applied to the inversion of
more complicated problems. Mainly, three advantages are possible. First, introducing more constraints should re-
duce the variance of the results. In addition, more prior knowledge about the properties of the fractures is capable
of reducing the computational costs by shortening the burn-in phase due to better initial guesses. Third, inversion
problems that include the update of the fracture aperture will benefit from information about the transmissivity
because of the direct connection between aperture and transmissivity.

The presented evaluation with the different synthetic test cases helps to learn about the features and difficulties
of the inversion algorithms together with the potential integration of additional prior information. Ultimately, the
results serve as preparation for DFN inversion with measured field data.

Data Availability Statement

The original data serving as reference for the test cases in this study is available through Doetsch et al. (2019).

References

Afshari Moein, M. J., Somogyviri, M., Valley, B., Jalali, M., Loew, S., & Bayer, P. (2018). Fracture network characterization using stress—based
tomography. Journal of Geophysical Research: Solid Earth, 123(11), 9324-9340. https://doi.org/10.1029/2018JB016438

Amann, F., Gischig, V., Evans, K., Doetsch, J., Jalali, R., Valley, B., et al. (2018). The seismo-hydromechanical behavior during deep geothermal
reservoir stimulations: Open questions tackled in a decameter-scale in situ stimulation experiment. Solid Earth, 9(1), 115-137. https://doi.
org/10.5194/se-9-115-2018

Berg, S. J., & Illman, W. A. (2011). Three—dimensional transient hydraulic tomography in a highly heterogeneous glaciofluvial aquifer—aquitard
system. Water Resources Research, 47(10). https://doi.org/10.1029/2011WR010616

Berkowitz, B. (2002). Characterizing flow and transport in fractured geological media: A review. Advances in Water Resources, 25(8), 861-884.
https://doi.org/10.1016/S0309-1708(02)00042-8

Berre, 1., Doster, F., & Keilegavlen, E. (2019). Flow in fractured porous media: A review of conceptual models and discretization approaches.
Transport in Porous Media, 130(1), 215-236. https://doi.org/10.1007/s11242-018-1171-6

Brauchler, R., Hu, R., Hu, L., Jiménez, S., Bayer, P., Dietrich, P., & Ptak, T. (2013). Rapid field application of hydraulic tomography for resolving
aquifer heterogeneity in unconsolidated sediments. Water Resources Research, 49(4), 2013-2024. https://doi.org/10.1002/wrcr.20181

Brauchler, R., Liedl, R., & Dietrich, P. (2003). A travel time based hydraulic tomographic approach. Water Resources Research, 39(12). https://
doi.org/10.1029/2003WR002262

Brooks, S., Gelman, G., Jones, G., & Meng, X.-L. (2011). Handbook of Markov chain Monte Carlo. Chapman and Hall/CRC.
https://doi.org/10.1201/b10905

RINGEL ET AL.

14 of 16


https://doi.org/10.1029/2018JB016438
https://doi.org/10.5194/se-9-115-2018
https://doi.org/10.5194/se-9-115-2018
https://doi.org/10.1029/2011WR010616
https://doi.org/10.1016/S0309-1708(02)00042-8
https://doi.org/10.1007/s11242-018-1171-6
https://doi.org/10.1002/wrcr.20181
https://doi.org/10.1029/2003WR002262
https://doi.org/10.1029/2003WR002262
https://doi.org/10.1201/b10905

~1
AGV

ADVANCING EARTH
AND SPACE SCIENCE

Water Resources Research 10.1029/2021WR030401

Cardiff, M., & Barrash, W. (2011). 3-D transient hydraulic tomography in unconfined aquifers with fast drainage response. Water Resources
Research, 47(12). https://doi.org/10.1029/2010WR010367

Cardiff, M., Barrash, W., & Kitanidis, P. K. (2013). Hydraulic conductivity imaging from 3-D transient hydraulic tomography at several pumping/
observation densities. Water Resources Research, 49(11), 7311-7326. https://doi.org/10.1002/wrcr.20519

Cardiff, M., Zhou, Y., Barrash, W., & Kitanidis, P. K. (2020). Aquifer imaging with oscillatory hydraulic tomography: Application at the field
scale. Groundwater, 58(5), 710-722. https://doi.org/10.1111/gwat.12960

Chen, J., Hubbard, S., Peterson, J., Williams, K., Fienen, M., Jardine, P., & Watson, D. (2006). Development of a joint hydrogeophysical inver-
sion approach and application to a contaminated fractured aquifer. Water Resources Research, 42(6). https://doi.org/10.1029/2005WR004694

Day-Lewis, F. D., Lane, J. W., Harris, J. M., & Gorelick, S. M. (2003). Time-lapse imaging of saline—tracer transport in fractured rock using
difference—attenuation radar tomography. Water Resources Research, 39(10). https://doi.org/10.1029/2002WR001722

de Dreuzy, J.-R., Méheust, Y., & Pichot, G. (2012). Influence of fracture scale heterogeneity on the flow properties of three—dimensional discrete
fracture networks (DFN). Journal of Geophysical Research: Solid Earth, 117(B11). https://doi.org/10.1029/2012JB009461

Doetsch, J., Gischig, V., Krietsch, H., Villiger, L., Amann, F., Dutler, N., & Hochreutener, R. (2019). Grimsel ISC experiment description. https://
doi.org/10.3929/ethz-b-000310581

Dorn, C., Linde, N., Le Borgne, T., Bour, O., & de Dreuzy, J.-R. (2013). Conditioning of stochastic 3-D fracture networks to hydrological and
geophysical data. Advances in Water Resources, 62, 79-89. https://doi.org/10.1016/j.advwatres.2013.10.005

Fan, Y., & Sisson, S. A. (2011). Reversible jump MCMC. In S. Brooks, A. Gelman, G. Jones, & X.-L. Meng (Eds.), Handbook of Markov chain
Monte Carlo. Chapman and Hall/CRC. https://doi.org/10.1201/b10905-4

Fischer, P., Jardani, A., & Jourde, H. (2020). Hydraulic tomography in coupled discrete-continuum concept to image hydraulic properties of a frac-
tured and karstified aquifer (Lez aquifer, France). Advances in Water Resources, 137, 103523. https://doi.org/10.1016/j.advwatres.2020.103523

Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., & Rubin, D. B. (2013). Bayesian data analysis (3rd ed.). CRC Press.

Geuzaine, C., & Remacle, J.-F. (2009). Gmsh: A 3-D finite element mesh generator with built-in pre- and post-processing facilities. International
Journal for Numerical Methods in Engineering, 79(11), 1309-1331. https://doi.org/10.1002/nme.2579

Green, P. J. (1995). Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. Biometrika, 82(4), 711-732.
https://doi.org/10.1093/biomet/82.4.711

Hadgu, T., Karra, S., Kalinina, E., Makedonska, N., Hyman, J. D., Klise, K., et al. (2017). A comparative study of discrete fracture network and
equivalent continuum models for simulating flow and transport in the far field of a hypothetical nuclear waste repository in crystalline host
rock. Journal of Hydrology, 553, 59-70. https://doi.org/10.1016/j.jhydrol.2017.07.046

Hastie, D. L., & Green, P. J. (2012). Model choice using reversible jump Markov chain Monte Carlo. Statistica Neerlandica, 66(3), 309-338.
https://doi.org/10.1111/j.1467-9574.2012.00516.x

Hu, R., Brauchler, R., Herold, M., & Bayer, P. (2011). Hydraulic tomography analog outcrop study: Combining travel time and steady shape
inversion. Journal of Hydrology, 409(1), 350-362. https://doi.org/10.1016/j.jhydrol.2011.08.03 1

Hyman, J. D., Dentz, M., Hagberg, A., & Kang, P. K. (2019). Linking structural and transport properties in three—dimensional fracture networks.
Journal of Geophysical Research: Solid Earth, 124(2), 1185-1204. https://doi.org/10.1029/2018JB016553

Hyman, J. D., Karra, S., Makedonska, N., Gable, C. W., Painter, S. L., & Viswanathan, H. S. (2015). dfnworks: A discrete fracture network
framework for modeling subsurface flow and transport. Computers & Geosciences, 84, 10-19. https://doi.org/10.1016/j.cageo.2015.08.001

IlIman, W. A. (2014). Hydraulic tomography offers improved imaging of heterogeneity in fractured rocks. Groundwater, 52(5), 659—-684. https://
doi.org/10.1111/gwat.12119

Illman, W. A., Liu, X., Takeuchi, S., Jim Yeh, T.-C., Ando, K., & Saegusa, H. (2009). Hydraulic tomography in fractured granite: Mizunami
underground research site, Japan. Water Resources Research, 45(1). https://doi.org/10.1029/2007WR006715

Jalali, M., Klepikova, M., Doetsch, J., Krietsch, H., Brixel, B., Dutler, N., & Amann, F. (2018). A multi-scale approach to identify and characterize
preferential flow paths in a fractured crystalline rock. Paper presented at the 52nd U.S. Rock Mechanics/Geomechanics Symposium. American
Rock Mechanics Association. ARMA 18-0496.

Keilegavlen, E., Berge, R., Fumagalli, A., Starnoni, M., Stefansson, 1., Varela, J., & Berre, I. (2021). PorePy: An open-source software for
simulation of multiphysics processes in fractured porous media. Computational Geosciences, 25(1), 243-265. https://doi.org/10.1007/
$10596-020-10002-5

Kittild, A., Jalali, M., Somogyvéri, M., Evans, K. F., Saar, M. O., & Kong, X.-Z. (2020). Characterization of the effects of hydraulic stim-
ulation with tracer-based temporal moment analysis and tomographic inversion. Geothermics, 86, 101820. https://doi.org/10.1016/j.
geothermics.2020.101820

Klepikova, M., Brixel, B., & Jalali, M. (2020). Transient hydraulic tomography approach to characterize main flowpaths and their connectivity in
fractured media. Advances in Water Resources, 136, 103500. https://doi.org/10.1016/j.advwatres.2019.103500

Klepikova, M., Le Borgne, T., Bour, O., Gallagher, K., Hochreutener, R., & Lavenant, N. (2014). Passive temperature tomography experiments
to characterize transmissivity and connectivity of preferential flow paths in fractured media. Journal of Hydrology, 512, 549-562. https://doi.
org/10.1016/j.jhydrol.2014.03.018

Krietsch, H., Doetsch, J., Dutler, N., Jalali, M., Gischig, V., Loew, S., & Amann, F. (2018). Comprehensive geological dataset describing a crys-
talline rock mass for hydraulic stimulation experiments. Scientific Data, 5(1), 1-12. https://doi.org/10.1038/sdata.2018.269

Laloy, E., Hérault, R., Jacques, D., & Linde, N. (2018). Training—image based geostatistical inversion using a spatial generative adversarial neural
network. Water Resources Research, 54(1), 381-406. https://doi.org/10.1002/2017WR022148

Langtangen, H. P., & Mardal, K.-A. (2019). Introduction to numerical methods for variational problems (Vol. 21). Springer.

Mardia, K. V., Nyirongo, V. B., Walder, A. N., Xu, C., Dowd, P. A., Fowell, R.J., & Kent, J. T. (2007). Markov chain Monte Carlo implementation
of rock fracture modelling. Mathematical Geology, 39(4), 355-381. https://doi.org/10.1007/s11004-007-9099-3

Ma, X., Zhang, K., Yao, C., Zhang, L., Wang, J., Yang, Y., & Yao, J. (2020). Multiscale-network structure inversion of fractured media
based on a hierarchical-parameterization and data-driven evolutionary-optimization method. SPE Journal, 25, 2729-2748. https://doi.
org/10.2118/201237-PA

Neuman, S. P. (2005). Trends, prospects and challenges in quantifying flow and transport through fractured rocks. Hydrogeology Journal, 13(1),
124-147. https://doi.org/10.1007/s10040-004-0397-2

O’Malley, D., Karra, S., Hyman, J. D., Viswanathan, H. S., & Srinivasan, G. (2018). Efficient Monte Carlo with graph—based subsurface flow
and transport models. Water Resources Research, 54(5), 3758-3766. https://doi.org/10.1029/2017WR022073

Poduri, S., Kambhammettu, B., & Gorugantula, S. (2021). A new randomized binary prior model for hydraulic tomography in fractured aquifers.
Groundwater, 59, 537-548. https://doi.org/10.1111/gwat.13074

Reddy, J. N., & Gartling, D. K. (2010). The finite element method in heat transfer and fluid dynamics (3rd ed.). Taylor & Francis.

RINGEL ET AL.

15of 16


https://doi.org/10.1029/2010WR010367
https://doi.org/10.1002/wrcr.20519
https://doi.org/10.1111/gwat.12960
https://doi.org/10.1029/2005WR004694
https://doi.org/10.1029/2002WR001722
https://doi.org/10.1029/2012JB009461
https://doi.org/10.3929/ethz-b-000310581
https://doi.org/10.3929/ethz-b-000310581
https://doi.org/10.1016/j.advwatres.2013.10.005
https://doi.org/10.1201/b10905-4
https://doi.org/10.1016/j.advwatres.2020.103523
https://doi.org/10.1002/nme.2579
https://doi.org/10.1093/biomet/82.4.711
https://doi.org/10.1016/j.jhydrol.2017.07.046
https://doi.org/10.1111/j.1467-9574.2012.00516.x
https://doi.org/10.1016/j.jhydrol.2011.08.031
https://doi.org/10.1029/2018JB016553
https://doi.org/10.1016/j.cageo.2015.08.001
https://doi.org/10.1111/gwat.12119
https://doi.org/10.1111/gwat.12119
https://doi.org/10.1029/2007WR006715
https://doi.org/10.1007/s10596-020-10002-5
https://doi.org/10.1007/s10596-020-10002-5
https://doi.org/10.1016/j.geothermics.2020.101820
https://doi.org/10.1016/j.geothermics.2020.101820
https://doi.org/10.1016/j.advwatres.2019.103500
https://doi.org/10.1016/j.jhydrol.2014.03.018
https://doi.org/10.1016/j.jhydrol.2014.03.018
https://doi.org/10.1038/sdata.2018.269
https://doi.org/10.1002/2017WR022148
https://doi.org/10.1007/s11004-007-9099-3
https://doi.org/10.2118/201237-PA
https://doi.org/10.2118/201237-PA
https://doi.org/10.1007/s10040-004-0397-2
https://doi.org/10.1029/2017WR022073
https://doi.org/10.1111/gwat.13074

~1
AGV

ADVANCING EARTH
AND SPACE SCIENCE

Water Resources Research 10.1029/2021WR030401

Ringel, L. M., Somogyvari, M., Jalali, M., & Bayer, P. (2019). Comparison of hydraulic and tracer tomography for discrete fracture network
inversion. Geosciences, 9(6), 274. https://doi.org/10.3390/geosciences9060274

Roubinet, D., de Dreuzy, J.-R., & Davy, P. (2010). Connectivity—consistent mapping method for 2-D discrete fracture networks. Water Resources
Research, 46(7). https://doi.org/10.1029/2009WR008302

Sambridge, M., Gallagher, K., Jackson, A., & Rickwood, P. (2006). Trans-dimensional inverse problems, model comparison and the evidence.
Geophysical Journal International, 167(2), 528-542. https://doi.org/10.1111/j.1365-246X.2006.03155.x

Sanchez-Leodn, E., Leven, C., Erdal, D., & Cirpka, O. A. (2020a). Comparison of two ensemble Kalman-based methods for estimating aquifer
parameters from virtual 2-D hydraulic and tracer tomographic tests. Geosciences, 10(7), 276. https://doi.org/10.3390/geosciences 10070276

Sanchez-Ledn, E., Leven, C., Erdal, D., & Cirpka, O. A. (2020b). Comparison of two ensemble-Kalman filter based methods for estimating aqui-
fer parameters from real 3-D hydraulic and tracer tomographic tests. Geosciences, 10(11), 462. https://doi.org/10.3390/geosciences 10110462

Sharmeen, R., I[llman, W. A., Berg, S. J., Yeh, T.-C. J., Park, Y.-J., Sudicky, E. A., & Ando, K. (2012). Transient hydraulic tomography in a frac-
tured dolostone: Laboratory rock block experiments. Water Resources Research, 48(10). https://doi.org/10.1029/2012WR012216

Somogyvéri, M., Jalali, M., Parras, S. J., & Bayer, P. (2017). Synthetic fracture network characterization with transdimensional inversion. Water
Resources Research, 53(6), 5104-5123. https://doi.org/10.1002/2016 WR020293

Tiedeman, C. R., & Barrash, W. (2020). Hydraulic tomography: 3D hydraulic conductivity, fracture network, and connectivity in mudstone.
Groundwater, 58(2), 238-257. https://doi.org/10.1111/gwat.12915

Tran, N. H., & Tran, K. (2007). Combination of fuzzy ranking and simulated annealing to improve discrete fracture inversion. Mathematical and
Computer Modelling, 45(7), 1010-1020. https://doi.org/10.1016/j.mcm.2006.08.013

Wang, X., Jardani, A., & Jourde, H. (2017). A hybrid inverse method for hydraulic tomography in fractured and karstic media. Journal of Hydrol-
ogy, 551, 29-46. https://doi.org/10.1016/j.jhydrol.2017.05.051

Wu, H., Fu, P., Zhang, J., & Morris, J. P. (2020). Interpretation of tracer data using a Markov chain Monte Carlo approach for the characterization
of the EGS collab testbed. Paper presented at the 54th U.S. Rock Mechanics/Geomechanics Symposium. American Rock Mechanics Associ-
ation. pp. ARMA 20-1705.

Wu, H., Zhang, J., Fu, P., & Morris, J. P. (2021). Inferring fracture aperture distribution at the EGS collab experiment 1 testbed through a deep
learning accelerated Bayesian approach. Paper presented at the 46th Workshop on Geothermal Reservoir Engineering.

Yeh, J. T.-C., & Liu, S. (2000). Hydraulic tomography: Development of a new aquifer test method. Water Resources Research, 36(8), 2095-2105.
https://doi.org/10.1029/2000WR900114

Yin, T., & Chen, Q. (2020). Simulation-based investigation on the accuracy of discrete fracture network (DFN) representation. Computers and
Geotechnics, 121, 103487. https://doi.org/10.1016/j.compgeo.2020.103487

Zhao, Z., & Illman, W. A. (2017). On the importance of geological data for three-dimensional steady-state hydraulic tomography analysis at a
highly heterogeneous aquifer-aquitard system. Journal of Hydrology, 544, 640-657. https://doi.org/10.1016/j.jhydrol.2016.12.004

Zhao, Z., lllman, W. A, Zha, Y., Yeh, T.-C.J., Mok, C. M. B, Berg, S. J., & Han, D. (2019). Transient hydraulic tomography analysis of fourteen
pumping tests at a highly heterogeneous multiple aquifer—aquitard system. Water, 11(9), 1864. https://doi.org/10.3390/w11091864

Zha, Y., Yeh, T.-C. J,, Illman, W. A., Tanaka, T., Bruines, P., Onoe, H., & Saegusa, H. (2015). What does hydraulic tomography tell us
about fractured geological media? A field study and synthetic experiments. Journal of Hydrology, 531, 17-30. https://doi.org/10.1016/j.
jhydrol.2015.06.013

Zienkiewicz, O. C., Nithiarasu, P., & Taylor, R. L. (2014). The finite element method for fluid dynamics (7th ed.). Butterworth-Heinemann.

Zimmerman, R. W., & Bodvarsson, G. S. (1996). Hydraulic conductivity of rock fractures. Transport in Porous Media, 23(1), 1-30. https://doi.
org/10.1007/BF00145263

References From the Supporting Information

Christen, J. A., & Fox, C. (2010). A general purpose sampling algorithm for continuous distributions (the t-walk). Bayesian Analysis, 5(2),
263-281. https://doi.org/10.1214/10-BA603

Haario, H., Laine, M., Mira, A., & Saksman, E. (2006). DRAM: Efficient adaptive MCMC. Statistics and Computing, 16(4), 339-354. https://
doi.org/10.1007/s11222-006-9438-0

Haario, H., Saksman, E., & Tamminen, J. (2001). An adaptive Metropolis algorithm. Bernoulli, 7(2), 223-242. https://doi.org/10.2307/3318737

Mira, A. (2001). On Metropolis-Hastings algorithms with delayed rejection. Metron - International Journal of Statistics, (3-4), 231-241.

RINGEL ET AL.

16 of 16


https://doi.org/10.3390/geosciences9060274
https://doi.org/10.1029/2009WR008302
https://doi.org/10.1111/j.1365-246X.2006.03155.x
https://doi.org/10.3390/geosciences10070276
https://doi.org/10.3390/geosciences10110462
https://doi.org/10.1029/2012WR012216
https://doi.org/10.1002/2016WR020293
https://doi.org/10.1111/gwat.12915
https://doi.org/10.1016/j.mcm.2006.08.013
https://doi.org/10.1016/j.jhydrol.2017.05.051
https://doi.org/10.1029/2000WR900114
https://doi.org/10.1016/j.compgeo.2020.103487
https://doi.org/10.1016/j.jhydrol.2016.12.004
https://doi.org/10.3390/w11091864
https://doi.org/10.1016/j.jhydrol.2015.06.013
https://doi.org/10.1016/j.jhydrol.2015.06.013
https://doi.org/10.1007/BF00145263
https://doi.org/10.1007/BF00145263
https://doi.org/10.1214/10-BA603
https://doi.org/10.1007/s11222-006-9438-0
https://doi.org/10.1007/s11222-006-9438-0
https://doi.org/10.2307/3318737

	Stochastic Inversion of Three-Dimensional Discrete Fracture Network Structure With Hydraulic Tomography
	Abstract
	1. Introduction
	2. Methodology
	2.1. Forward Modeling of Hydraulic Tomography Experiment
	2.2. Inversion Methodology
	2.3. Setup of Test Cases
	2.4. Implementation of Inversion
	2.5. Evaluation of the Results

	3. Results
	3.1. Test Case 1
	3.2. Test Case 2
	3.3. Test Case 3
	3.4. Test Case 4
	3.5. Comparison of the Results for All Four Test Cases

	4. Conclusions and Outlook
	Data Availability Statement
	References
	References From the Supporting Information


