
RESEARCH ARTICLE
10.1002/2016WR020293

Synthetic fracture network characterization with
transdimensional inversion
M�ark Somogyv�ari1, Mohammadreza Jalali1, Santos Jimenez Parras1 , and Peter Bayer1,2

1Department of Earth Sciences, ETH Zurich, Zurich, Switzerland, 2Institute for New Energy Systems (InES), Technische
Hochschule Ingolstadt, Ingolstadt, Germany

Abstract Fracture network geometry is crucial for transport in hard rock aquifers, but it can only be
approximated in models. While fracture orientation, spacing, and intensity can be obtained from borehole
logs, core images, and outcrops, the characterization of in situ fracture network geometry requires the inter-
pretation of spatially distributed hydraulic and transport experiments. In this study, we present a novel con-
cept using a transdimensional inversion method (reversible jump Markov Chain Monte Carlo, rjMCMC) to
invert a two-dimensional cross-well discrete fracture network (DFN) geometry from tracer tomography
experiments. The conservative tracer transport is modeled via a fast finite difference model neglecting
matrix diffusion. The proposed DFN inversion method iteratively evolves DFN variants by geometry updates
to fit the observed tomographic data evaluated by the Metropolis-Hastings-Green acceptance criteria. A
main feature is the varying dimensions of the inverse problem, which allows for the calibration of fracture
geometries and numbers. This delivers an ensemble of thousands of DFN realizations that can be utilized
for probabilistic identification of fractures in the aquifer. In the presented hypothetical and outcrop-based
case studies, cross sections between boreholes are investigated. The procedure successfully identifies major
transport pathways in the investigated domain and explores equally probable DFN realizations, which are
analyzed in fracture probability maps and by multidimensional scaling.

1. Introduction

Simulation of flow and transport in fractured rocks means dealing with highly structured systems with sig-
nificant permeability contrasts, pronounced preferential flow paths, and characteristic anisotropies in the
hydraulic parameters. Realistic reconstruction of fracture networks in numerical models is a challenge,
which is commonly restricted by the limited amount of data and insufficient insight from field measure-
ments [Berkowitz, 2002; Neuman, 2005; Illman, 2014]. To get around these restrictions, concepts with
reduced model complexity or with focus on relevant features such as a few prominent fractures are applied.
Through these, estimation of model parameters can be simplified, and inversion problems are better posed.

Equivalent continuum models [Illman and Neuman, 2003; Sahimi, 2011] and stochastic continuum models
[Day-Lewis et al., 2000; Vesselinov et al., 2001a, 2001b; Hao et al., 2008; Illman et al., 2009; Zha et al., 2015], for
example, approximate the fractured rock as a smoothened and highly heterogeneous porous medium and
are able to delineate the main flow channels in an aquifer. These models are mostly limited to fracture net-
works which have a high fracture density [Long et al., 1982], and where flow channeling plays an important
role [Sahimi, 2011]. They cannot directly incorporate crucial structural information such as statistics on main
fracture orientations or intensity. However, smoothening of discrete fractures allows for the use of estab-
lished geostatistical space-filling methods, which are convenient for computationally efficient model inver-
sion [Yeh et al., 1996; Franssen and G�omez-Hern�andez, 2002; Sch€oniger et al., 2012; Illman et al., 2015].
Together with the use of data sets obtained from spatially distributed field measurements, well-constrained
flow and transport models can be derived.

Spatially distributed measurements are fundamental to invasive tomographic tests such as hydraulic, pneu-
matic, and tracer tomography [Martinez-Landa and Carrera, 2006; Illman et al., 2009; Berg and Illman, 2011;
Hu et al., 2015; Paradis et al., 2015; Zhou et al., 2016]. Here, pressure or tracer signals are recorded between
different sources and receivers (e.g., multiple well screens) and the data are inverted to image the spatial
heterogeneity in the subsurface. Illman [2014] reviewed the state-of-the art in hydraulic and pneumatic
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tomography in fractured rock, with successful applications to synthetic models [Hao et al., 2008; Ni and Yeh,
2008; Zha et al., 2016], laboratory [Sharmeen et al., 2012], and field cases [Meier et al., 2001; Vesselinov et al.,
2001a, 2001b; Franssen and G�omez-Hern�andez, 2002; Brauchler et al., 2003; Ni and Yeh, 2008; Illman et al.,
2009; Castagna et al., 2011; Zha et al., 2015, 2016]. All these applications utilize continuum models, which
are calibrated based on volume-averaging multi-Gaussian geostatistical models, or utilizing smoothing reg-
ularization [Brauchler et al., 2003]. Shortcomings are not only the limited realism of the models, but also con-
tinuum assumptions may yield unsatisfactory calibration of the hydraulic parameters, such as described in
the work of Sharmeen et al. [2012]. Here, hydraulic conductivity of the rock matrix was overestimated, which
is considered a consequence of treating the fractured rock as a single continuum, or in other words, a result
of underestimating the conductivity of fractures.

Discrete fracture networks (DFN) are realistic mappings of fracture geometries based on the field observa-
tion via a stochastic representation of fracture properties. Individual fracture geometry and fracture network
connectivity are among the key parameters for such a realistic representation [Hestir et al., 1998, 2001; Jang
et al., 2008; Frampton and Cvetkovic, 2010; Niven and Deutsch, 2012; Dorn et al., 2013; Li et al., 2014]. DFN
models could model flow and transport in fractured media, although the strong reliance on the cubic law
makes these simulations very sensitive to aperture estimations [Neuman, 1988, 2005]. Still, DFN models
could better represent the fractured media than continuum models if the number of fractures is small. As a
basis for DFN construction, statistical information of the fractured rock (such as fracture intensity) can be
used, which is hard to exploit in continuum models. In field cases, however, this requires implementing
highly parameterized fracture networks, which are difficult to adjust to hydraulic measurements. The big-
gest challenge of calibrating DFNs is the high number of parameters that would be required for individual
tuning of each fracture. This is complicated by the expected nonconvexity of the inverse problem, by insuf-
ficient data for unique model calibration, and by the need for flexible automatic network implementation in
the numerical model during iterative calibration. For example, any change in the number of fractures within
a DFN during the inversion process results in a change in the number of model parameters, making it
impossible to use traditional optimization techniques.

Available automated calibration procedures could commonly reduce the dimension and complexity of
inverse problems. For instance, Mauldon et al. [1993] and Datta-Gupta et al. [1995] simulated the fracture
network via partially connected conductors with equal or variable apertures, aligned to a predefined lattice
as a finite element approximation of the fractured system. Other concepts keep the number of fractures
fixed while adjusting their hydraulic properties [Le Borgne et al., 2007; Le Goc et al., 2010; Dorn et al., 2013;
Klepikova et al., 2014], activating-deactivating fractures [Hestir et al., 1998; Niven and Deutsch, 2012], or solv-
ing the problem over the statistical parameters of the DFN but not on the exact geometries [Jang et al.,
2008]. [Dorn et al., 2013] suggested that using variable dimension DFN inversion would be a good choice to
improve the capabilities of the existing DFN-based inversion techniques.

In this study we follow the suggestion by Dorn et al. [2013] and propose a new methodology that uses
transdimensional Bayesian inversion [Green, 1995] to reconstruct the geometry of DFN models. This enables
us to not only adjust the fracture geometries but also the number of fractures during the inversion proce-
dure. Fracture network geometry is among the challenging properties to determine between boreholes. As
prior information, statistical data available for fractured rocks are utilized. By processing data from tomo-
graphic measurements, most probable fracture locations and connectivities are identified.

2. Methodology

2.1. Simulation of Tracer Tomography
Tomographical methods use penetrating signals to obtain information of closed volumes by means of a
multisources/multireceivers setup. These set-ups deliver experimental data which, when inverted together,
can be utilized to visualize subsurface structures. Tracer tests use injected substances (solutes or particles)
or heat to map the pathways of transport in unknown aquifer systems. Conservative tracers do not decay or
react with the flowing fluid or with the rock matrix. For tracer tomography, multilevel tracer injection is
used (which is obtained by repeated tracer tests or by using multiple tracers at the same time) and the
breakthrough curves are recorded at multiple depth points in downgradient wells (receivers) [Illman et al.,
2010; Jim�enez et al., 2016; Somogyv�ari et al., 2016]. In fractured media, local injection can be achieved by
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using packer systems to isolate specific fractures. The new inversion procedure here is developed relying on
virtual tomographic experiments simulated with given DFNs. Such a reference DFN serves as the ‘‘truth,’’
which needs to be reconstructed by the inversion procedure. We focus on 2-D models of vertical DFN pro-
files investigated by tomographic cross-well testing. After simulating conservative tracer injections in one
well, the breakthrough curves at the other well represent the observations that are used for calibration.

For forward simulation of the experiments, a fast and robust hydraulic model has been developed to simu-
late the pressure and tracer propagation inside the fracture network [Jalali, 2013]. This model is based on
an implicit finite difference approach and has the capability to solve for both steady state and transient con-
ditions. For simulating the tracer experiments, the steady state solutions are used. Only the fracture network
in the domain is discretized and it is assumed that the matrix is impermeable and does not react with the
tracer. Tracer diffusion between the fractures and the surrounding rock matrix is neglected [Neretnieks,
1980]. These assumptions are approximate, but appropriate for formations such as crystalline rock. By simu-
lating a vertical cross section between two wells, the thickness of fractures is assumed to be unity (perpen-
dicular to the 2-D DFN plane), and fracture aperture and length control the storativity of each fracture
element. Fracture conductivity for each element is calculated using the cubic law, assuming each fracture
segment consists of two parallel plates (fracture walls).

Initially, the mass conservation equation for a control volume without any chemical reaction is solved until
a steady state condition is satisfied. A constant pressure gradient is applied between the injection and mon-
itoring boreholes and the pressure propagation is calculated using an implicit finite difference method
(backward time, centered space method ‘‘BTCS’’). The 2-D assumption requires the use of pressure boundary
conditions, which is considered appropriate in low permeability rocks. The fracture’s flow rate is related to
the fracture pressure gradient via Darcy’s law. The output of this simulation is the pressure and velocity field
in the discrete fracture network.

The advection-dispersion equation is then solved for the fracture network as a result of the tracer injection
at the source interval. In this case, an implicit and upwind finite difference method is implemented in order
to overcome the instabilities introduced by the central differencing scheme after tracer injection initiation
as well as at the tracer front. Two reasons can be mentioned for the observed instabilities in the transient
advection-dispersion problems: advection dominated flow (i.e., high Peclet number) and sharp gradients
during small time steps as a result of transient solution. Brooks and Hughes [1982] showed that these insta-
bilities could be overcome using the upwind solution of the differential equations. The forward model will
then estimate the concentration field in the fracture network and the tracer breakthrough curves (BTCs) for
selected monitoring points in the observation well.

2.2. Principles of Transdimensional Inversion
While traditional inversion methods solve inverse problems over a predefined set of parameters [Menke,
1984], transdimensional inversion techniques vary the number of parameters during the inversion process
and solve the problem over an a priori unknown number of parameters [Sambridge et al., 2012]. Dealing
with an unknown number of parameters increases the complexity of the inverse model. However, this may
be compensated by lowering the number of model constraints, and by replacing several independent
inverse model runs with different fixed problem dimensions by one transdimensional run. Green [1995] pro-
posed a Bayesian concept of sampling from the posterior probability distribution of a transdimensional
inverse problem. This reversible jump Markov Chain Monte Carlo (rjMCMC) method (also known as
Metropolis-Hastings-Green (MHG) algorithm) has become the most popular inference method to handle
this problem and has also made its way to geosciences. The method has shown to be effective on tomo-
graphic problems where the inverse model is defined as a spatial distribution of parameters. Bodin and
Sambridge [2009] have proposed an rjMCMC application for seismic tomography and Jim�enez et al. [2016]
utilized the concept to invert tracer tomography experiments in porous media with pilot points. Mondal
et al. [2010] used rjMCMC to resolve porous flow in heterogeneous media and Mardia et al. [2007] employed
the method for fractured rock modeling based on the structural data from borehole intersections. Mardia
et al. [2007] reveals the suitability of rjMCMC as a flexible plane fitting algorithm to orient fractures in space,
assuming that prior knowledge on fracture properties or borehole data are available. Fractures in a DFN
model are usually oriented with given statistical properties, and rjMCMC is a probabilistic sampling proce-
dure especially suited for handling parameter distributions. Their approach, however, does not consider
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calibration to observations from tomographic experiments. In fact, hydraulic and tracer tomographic meas-
urements provide additional insight and thus have the potential to better reconstruct those fractures rele-
vant for flow and transport. Tomographic experiments for DFN calibration will be considered here.

A Bayesian approach requires that all information is handled as random variables, in the form of probability
density functions (PDF). The goal of Bayesian inference is to map the posterior probability distribution of
the problem [Gelman et al., 2004]. The posterior probability is determined by the available prior information
and the likelihood of the observation data. Using Bayes’ theorem, the posterior probability can be written
as:

P hjnð Þ5 P njhð ÞP hð Þ
P nð Þ (1)

where P hjnð Þ is the posterior probability distribution, the probability of a model parameter set (h) given the
observation data (n). P njhð Þ is the likelihood function of the observation data, or the probability of observa-
tion data (n) given the model parameters (h). P hð Þ is the available prior information of the model parameters
before observations are made. P nð Þ is the PDF of the observations. This term is independent from the model
parameters, so it can be considered constant throughout the modeling. When the posterior of a problem
cannot be expressed in an analytical form, a purpose-built sampling algorithm can be used, such as the
rjMCMC method. This perturbs the model parameters and can also vary their number (the dimensionality of
the problem).

2.3. DFN Inversion Procedure
Figure 1 depicts the DFN inversion procedure. In this study, the examined model parameters are the geo-
metrical properties of the fractures; i.e., their locations and lengths. For this initial inverse modeling effort,
the physical properties of the fractures such as apertures are considered constant and uniform for each frac-
ture set. Our studied reference DFNs are built up by two fracture sets with different inclination angles and
apertures, as fractured rocks are often dominated by two fracture sets [Valley, 2007; Ziegler et al., 2015].

The fracture length distribution (FLD) is one of the key statistical properties. In natural rocks, smaller frac-
tures are more frequent than larger ones. A common approximation for this trend on a field scale is to use a
power law [Torabi and Berg, 2011]. In models, truncated FLDs are used. As very short fracture segments are
less relevant for flow and transport [Bour and Davy, 1997; de Dreuzy et al., 2002; Darcel et al., 2003; Bagh-
banan and Jing, 2007], they are excluded in our work (see Figure 2b). Fracture intensity is calculated as the
total length of fractures over the investigated area [La Pointe, 1988]. Additionally, a technical parameter, the
discretization length, is defined. It represents the resolution of the forward model, and thus determines
the scale of geometric manipulations. Accordingly, in our approach, the DFN models are built up from
straight fracture segments, with lengths taken from a discretized FLD. The interconnections between the
fractures are also spaced according to the predefined discretization length.

The inversion procedure (Figure 1) is initiated by randomly generating a DFN realization, r, based on given
statistical properties. It is implemented in a forward model and evaluated by comparison to the observa-
tions. In each subsequent iteration, a new DFN realization is proposed by sequentially updating the geome-
try of the previous one. The rjMCMC algorithm is reversible by definition [Green, 1995]. Reversibility means
that the algorithm runs with the same rules backward as forward. This is considered when defining the fol-
lowing three geometry updates: fracture addition, fracture deletion, and fracture shift.

Fracture addition is the so-called birth move of the rjMCMC algorithm, where the dimensionality of the
problem is extended and one new fracture is added to the DFN. There are several rules concerning this
update. For example, the position of the new fracture is drawn randomly, but not over the whole domain as
the added fracture is always connected to the DFNs. This is important to maintain the reversibility of the
algorithm. The length of the added fracture is drawn from a prior fracture length distribution (FLD). This
FLD is recalculated after each update to guide the actual FLD toward the initially defined FLD. This recalcula-
tion is needed, because the fracture deletion update does not obey any FLD rule. Since it draws from the
initially defined FLD, it would yield a distorted FLD. The addition update has three substeps (Figures 2a–2c):

1. First, the fracture set and the insertion point are randomly selected (Figure 2a). The predefined discretiza-
tion length divides each fracture into equal length segments and each segment end represents an
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insertion point. To avoid fracture overlaps, a fracture can only be added to an insertion point, which is on
a fracture from the other fracture set.

2. Second, the length of the inserted fracture is determined (Figure 2b). Each insertion point has a maxi-
mum insertable fracture length to avoid overlaps. This is reflected by drawing the fracture length from a
truncated FLD.

Figure 1. Overview of the DFN reconstruction algorithm. The reconstruction starts from a random generated initial solution and the input
of the method is the experiment data. The steps of the iterative DFN solver are the following: update DFN model, simulate tomography,
calculate misfit, accept, or reject the updated DFN. The accepted DFN realizations are stored in an ensemble, which serve as the output of
the algorithm.
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3. The third step is to find the position of the intersection between the new fracture and the insertion point
(Figure 2c). The possible positions are constrained by the length of the fracture and also other fractures
above and below the inserted fracture from the same set.

Fracture deletion is the so-called death move of the rjMCMC algorithm, when the problem dimensionality is
reduced. Before random deletion, the fractures that can be deleted are identified (Figure 2d).

1. A fracture cannot be deleted if its deletion would disconnect the sources and receivers of the tomo-
graphic experiment in the model, as the forward model can only be executed if all sources and receivers
are connected.

2. A fracture cannot be deleted if it is not intersecting with any other fractures. Otherwise the reversibility
of the algorithm would be violated, as the deleted fracture could not be added back again. An irrevers-
ible update could not be evaluated by the rjMCMC algorithm.

3. The fractures connecting the source and receiver points to the rest of the DFN are permanent. They can-
not be deleted or shifted in order to keep the fracture network connected. The properties of these frac-
tures are considered to be known from borehole measurements prior the tomographic experiment.

Fracture shift is the third possible update. A deletable fracture is shifted along one of its intersecting frac-
tures until the closest free insertion points. The technical implementation of this update is the combination
of the earlier two: first deletion and then the insertion of the fracture at another position.

The type of update is randomly selected according to initially defined probabilities. These probabilities do not
have to be constant, but they can change from iteration to iteration. If the fracture intensity reaches a mini-
mum limit, the fracture deletion update is disabled. If it reaches a maximum limit, the fracture addition update
is disabled. These limits assure that the fracture intensities of the solutions stay close to the predefined value.
After an update, the tomographic experiment is simulated with the proposed new DFN realization, r’.

The misfit between the simulations and the observations is calculated to characterize the ‘‘goodness’’ of a
DFN realization. Different misfits can be used regarding the type of the experiments and the data quality. In

Figure 2. Different update steps of DFN reconstruction. (a) Fracture addition: identify possible insertion points. (b) Fracture addition: draw
fracture length from the discretized fracture length distribution (dx: discretization length). (c) Fracture addition: draw the position of the
insertion point on the inserted fracture. (d) Fracture deletion: identify deletable fractures (red: nondeletable, green: deletable).
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this study, the misfit is oriented at the root mean squared (RMS) error between the simulated and the
observed measurements for the same source-receiver combination. It is also possible to use moments or
breakthrough times for comparison instead of the full curve in this step. This could be advantageous when
the quality of the breakthrough curves is poor or the flow field is altered by the used tracer (e.g., density
effects [Somogyv�ari et al., 2016]).

The rjMCMC evaluates the proposed DFN realization using the Metropolis Hastings Green (MHG) accep-
tance criterion [Green, 1995]. The MHG criterion, a r0jrð Þ; combines the evolution of the misfit with the statis-
tical properties of the proposed update:

a r0jrð Þ5min 1;prior ratio 3 likelihood ratio 3 proposal ratio 3 Jacobian½ � (2)

a rjr0ð Þ5min 1;
p r0ð Þ
p rð Þ 3

p njr0ð Þ
p njrð Þ 3

q rjr0ð Þ
q r0jrð Þ3jJj

� �
(3)

where r is the i-th realization, r0 is the updated realization (proposal), p rð Þ is the PDF of the prior, p njrð Þ is
the likelihood function, q r0jrð Þ is the proposal probability, and J is the Jacobian.

The MHG criterion makes it possible to compare realizations with different numbers of parameters by not
only comparing the likelihoods, but also the reversible updates. The likelihood function of a simulated mea-
surement quantifies the probability of the observations given a realization of parameters. Since the noise of
the measurements typically follows a normal distribution, the likelihood function reads as a Gaussian
function:

p njrð Þ5 1ffiffiffiffiffiffiffiffiffiffi
4pr2

p exp 2
n2n rð Þð Þ2

2r2

 !
(4)

which is equivalent to using a RMS misfit [Aster et al., 2013]. The variance of the simulated data noise (r2)
defines the acceptance rate of the rjMCMC algorithm. The variance of the likelihood function is set as the
noise of the observations [Gelman et al., 2004; Geyer, 2011].

The proposal ratio is the ratio between the probability of the reverse step (q rjr0ð Þ) and the forward step
(q r0jrð Þ). The updates have to be reversible; otherwise, the reverse step probability cannot be calculated.
The proposal ratio makes it possible to compare realizations with different parametrization, by defining the
transient step probabilities between them.

Each proposal probability is built up from the probabilities of the substeps of the used update (see Figure 2).
For fracture addition, the proposal probability can be expressed as:

P additionð Þ5 P insertionpoint
� �

3P lengthjpointsð Þ3P positionjlength & pointsð Þ (5)

P additionð Þ5 1
count pointsð Þ3FLDtruncated3

1
possible positions

(6)

First, the probability of selecting one insertion point is calculated from the total number of possible inser-
tion points. Then the probability of the drawn injection length is calculated from the FLD and truncated to
the fracture length limits at the given insertion points. Finally, the probability of the fracture positioning is
calculated as well (also limited by the DFN). The reverse update of the fracture addition is the fracture
deletion:

P deletionð Þ5 1
count deleteable fracturesð Þ (7)

The probability of fracture deletion is calculated from the number of deletable fractures in the realization. In
the case of a fracture shift, the proposal ratio is 1. Regarding the prior ratio of the MHG criterion, only nonin-
formative priors are used for the updates in this study (e.g., FLD). These priors are considered within the pro-
posal ratio calculation and thus the prior ratio is always one [Aster et al., 2013].

For the evaluation of the MHG ratio (a), a random number b is drawn from a uniform distribution between
0 and 1. The proposal is accepted if b � a and rejected if b > a. Accepted realizations are stored, and
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together serve as the result ensemble. The new iteration is started with the last accepted DFN realization.
Rejected realizations are discarded.

2.4. Implementation
The used initial DFN solution is generated randomly based on the given statistical parameters (FLD, spacing,
fracture intensity) and it needs to connect sources and receivers. In order to reach this, a very dense DFN is
generated by repeated additions until the domain is completely filled with fractures (when no free insertion
points exist). From this point, randomly selected fractures are chosen and deleted when the two wells
remain connected. This is continued until the desired fracture intensity value is reached. To maintain a
homogeneous distribution of fractures over the whole domain, the fracture intensity is calculated over
smaller subareas by dividing the domain into quadrants and further if needed. This homogeneity is impor-
tant, because prior the calibration we consider the given value of fracture intensity valid over the whole
investigated domain. The obtained realization is the initial solution for the inversion procedure (Figure 1).

The convergence rate of the algorithm depends on the chosen variance value of the likelihood function. If
this value was set too low, the process does not converge. In this case, the algorithm does not accept any
update when the misfit would increase. This would trap the algorithm in the first reached local minimum of
the inverse problem [Aster et al., 2013]. The optimal value of likelihood variance is case specific; a good
choice is to use the variance value of the measurements, which is a common solution for conventional Mar-
kov chain applications [Gelman et al., 2004].

The rjMCMC algorithm requires a great number of iterations in order to map the posterior of the inverse
problem properly. The convergence of Markov chains can be divided into two phases. The first phase is
when the misfit is rapidly converging to zero (or to a minimal value). This is called the burn in phase [Geyer,
2011]. The accepted realizations of this phase are not stored because they are strongly dependent on the
used initial DFN realization. In the second phase, the misfits of the accepted realizations converge with
small fluctuations around a stable value. Ideally, samples from this second phase serve as equally probable
solutions to the inverse problem. The sequentially produced realizations have small differences because
each accepted iteration has been created by one update. To properly map the posterior probability of the
inverse problem with these small steps, a large number of samples is required (typically over 10,000
accepted realizations).

The computational time of each iteration is dominated by the computational time for the forward model.
Clearly, consideration of further processes such as matrix diffusion would increase the computational bur-
den. Even if our forward model is fast and allows flexible adjustment of fracture geometries, alternative
implementations such as mesh-free fracture models appear well suited [Noetinger et al., 2016]. The calcula-
tion speed of the forward model used here correlates with the number of fractures. Forward models with a
large number of fractures would reduce the computational efficiency. This is modulated by truncation of
the FLD, and thus by avoiding small hydraulically inactive fractures. The other time consuming process is to
identify which fracture can be deleted without splitting the connection between the source-receiver points.
This requires repeated connection tests after deleting one by one all the fractures within the DFN. We
improved this process by parallelizing it to multiple threads (according to the used CPU architecture).

3. Test Cases

Two example cases are investigated with the presented DFN inversion. The fracture network of the first
case is a hypothetical variant with simple geometry. The second synthetic geometry is created based on an
outcrop field data. With both fracture networks, tracer tomography experiments are simulated and the frac-
ture network geometry in the vertical cross section between source and receiver well is reconstructed.

3.1. Simple Hypothetical Case
In this case, two wells on the left and right model boundaries are connected by one main fracture
(Figure 3a). It belongs to the first of two fracture sets, with inclinations of 108 and 1108, and apertures of 3
and 2 mm, respectively. In each of the wells, three source or receiver-points are connected to the aquifer
via fixed fractures that belong to the same set as the main fracture of the model. Keeping these fractures
fixed assumes that they have been localized and described through preliminary borehole geophysical
investigation. An initially uniform pressure of 200 kPa is applied to the model domain. In order to duplicate
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the recorded data, each well serves for injection and observation. An injection pressure of 300 kPa is assigned
to the injection interval of the one well, and the pressure of the other production well is set to 100 kPa. The
simulation of tracer transport starts only after the steady state flow field is established. Tracer concentrations
in the fractures are initially zero. Continuous tracer injection is started at time t5 0 using a 20 mg/L solution
of an ideal conservative tracer. The tracer injection is maintained until the end of the experiment. The end of
the experiment is set where complete breakthroughs are detected in every observation point (except where
no breakthrough occurred). The used experimental time was 200 s and concentrations were measured every
10 s. Here, 10% Gaussian noise is added to the simulated observations to represent measurement noise. The
dispersion coefficient for the tracer is D5 0.6 m2s21. Every injection is simulated as an independent experi-
ment, starting from a tracer-free state. In practice, however, this could be performed as a multitracer experi-
ment with simultaneous injections of different types of tracers [e.g., Jim�enez et al., 2016].

3.2. Outcrop-Based Case
In addition to the simple hypothetical case, flow and transport in a mapped fracture network is simulated. It
stems from the Tschingelmad outcrop from the upper Aar valley in the Grimsel region of the Central Alps,
Switzerland [see Ziegler et al., 2013, 2014, for detailed geological description of the fractured rocks in the
area] (Figure 4a). The fractured system is hosted in the granite rocks of the central Aar Massif. A 50 m 3
50 m outcrop surface area is selected, where the identified fractures form two loosely connected zones.
Two fracture sets are identified based on the distribution of their inclinations, and different apertures of 1.5
and 0.5 mm are assigned according to typical values reported from the Grimsel region [Bossart and Mazurek,
1991]. The FLD of the fracture network roughly follows the expected power law [Torabi and Berg, 2011],
which is truncated and fractures smaller than 1 m are ignored in the model (Figure 4c). Equivalent to the
hypothetical case, three sources and three receiver points are used, located at the right and left edge of the
domain at known fracture ends. The same initial and boundary conditions are used as in the previous case,
but the experiment is only performed in one direction without swapping the injection and observation
well, which is considered to be a more realistic scenario [Doro et al., 2015; Djibrilla Saley et al., 2016; Jim�enez
et al., 2016]. The experimental time was set to 2000 s and the concentrations were measured every 20 s.
Given the longer time of the experiment, much more data points are collected than in the hypothetical
case.

4. Result Processing

4.1. Ensemble Size
The termination criterion of transdimensional Markov chain algorithms is an open question because conver-
gence diagnostic techniques used in conventional MCMC simulations are not applicable for transdimen-
sional cases [Bodin and Sambridge, 2009]. Our solution to overcome this problem is based on the

Figure 3. (a) Synthetic fracture network model. Injection and observation points are marked as numbered and colored dots. (b) Tracer
breakthrough curves (normalized by injection concentration) for tomography to the right direction (left well: injections, right well: observa-
tions). The color of the frame matches with the injection point color, while the color of the curves matches with the observation point
color. (c) Tracer breakthrough curves of the opposing experiment.

Water Resources Research 10.1002/2016WR020293

SOMOGYV�ARI ET AL. TRANSDIMENSIONAL DFN INVERSION 5112

 19447973, 2017, 6, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1002/2016W

R
020293 by Fak-M

artin L
uther U

niversitats, W
iley O

nline L
ibrary on [02/07/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



suggestions of [Gelman et al., 2004]. They check the distribution of the parameter vector in the ensemble
and if it is not converged to a common distribution, they continue the inversion until the length of the Mar-
kov chain is doubled. Our approach is conceptually similar, but without the possibility to examine parame-
ter distributions, we investigated if the result (fracture probability map and multidimensional scaling) shows
any major changes (changes in the dominant transport pathways) if the chain length is extended (double
the size of the ensemble). If the two results are similar, this means that the posterior of the inverse problem
is already sampled by the first part of the sequence and latter sequence parts are just sampling from the
same realizations again. If the two results are different, the inversion is continued and the same conditions
are checked with a longer sequence.

DFN realizations from the beginning of the chain are considered part of the burn-in phase. The endpoint of
the burn-in phase is identified after the visual inspection of the evolution of the misfits, where the values
are converged [Jim�enez et al., 2016]. To minimize the influence from the burn-in phase, the length of the
discarded sequence is doubled.

The DFN inversion produces a large number (more than 10,000) of DFN realizations, which is called ensem-
ble. Instead of a complete presentation of all of the realizations, we concentrate on the statistical informa-
tion from the ensemble. In the realizations, each fracture is represented by three inverted parameters (two
coordinates and the length), the models contain hundreds of fractures, and the number of fractures can
vary. Therefore, individual analysis of inverted parameters is not done here, but two different ways to visual-
ize the full ensemble results are suggested in the following.

4.2. Fracture Probability Map
The most straightforward way of result visualization is to plot exemplary DFN realizations from the ensem-
ble. This can be misleading, since many fractures in the realizations are not used for tracer transport, and
they appear as relics without influence on the inversion. The fractures where transport takes place are the
hydraulically active fractures, and the inversion process is only sensitive to their positions, but not to those
of the rest. The active fractures of a DFN realization are those where changes in the tracer concentration is

Figure 4. Outcrop-based model (a) 3-D surface model of the Tschingelmad outcrop, (b) identified 2-D DFN geometry, (c) fracture length
distribution of DFN (N: cumulative number, l: fracture length), and (d) fracture angle distribution of DFN.
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measureable during the simulation. In order to visualize the results of an ensemble of realizations, a map
showing the probability of hydraulically active fractures is chosen. This fracture probability map is gener-
ated by stacking many DFN realizations together, ideally all results from the ensemble. However, due to the
large ensemble size and huge number of parameters, with many similar realizations, a subset is used to rep-
resent the mapped posterior distribution. This sample is generated by keeping only every k-th realization of
the ensemble, which is known as sequence thinning [Gelman et al., 2004]. Local probabilities are calculated
after rasterizing each realization and computing the frequency with which a fracture is found in each pixel
in the ensemble.

4.3. Multidimensional Scaling
Instead of local fracture probabilities, a clustering technique is used to discriminate among characteristic
DFN geometries identified in the results ensemble. This is accomplished by multidimensional scaling (MDS),
which visualizes similarities and differences among DFN realizations by projecting their relative distances
into a Euclidian space [Borg and Groenen, 2005]. For this, the DFN realizations are rasterized similarly as for
calculation of fracture probability maps. Then these rasterized realizations are compared to each other in
pairs, cell-by-cell, to calculate the relative differences among them. We call these differences realization dis-
tances. All the calculated DFN realization distances are stored in one distance matrix, where matrix element
(i,j) is the distance between the i-th and the j-th realization. The distance matrix stores the relation between
all the investigated DFN realizations.

As the distances among the realizations are relative measurements rather than absolute indicators of frac-
ture geometry, they can only be visualized directly in a multidimensional space. The MDS method is
designed to project these multidimensional point clouds into an N-dimensional space, with minimal distor-
tion on the distances between the points [Caers et al., 2010]. We use the classical MDS technique to project
the distance matrix to a 2-D Euclidian plane. The distance matrix does not contain any absolute location of
the samples, just their relative position to each other. Thus, the axes of the MDS projected point cloud do
not contain any relevant information, and the projection only shows the relations among the different real-
izations. The point cloud can be used for clustering in order to identify representative DFN realizations
within the ensemble with significant differences. Alternatively, to choose a representative realization, frac-
ture probability maps can also visualize the subset of realizations within a cluster.

5. Results

5.1. Hypothetical Case
Figures 3b and 3c shows the tracer breakthrough curves (BTCs) simulated with the forward model of the
simple hypothetical DFN depicted in Figure 3a. The assigned noise is not shown in the figures. The differ-
ences in the BTCs reflect the assumed anisotropy of the DFN, with smaller apertures of the high inclination
fractures. The two upper injections from the left side did not produce any breakthroughs at the observation
points. Observations where no breakthrough occurs frequently appear in the results of tomographic tracer
tests, but they are often ignored in the inversion [Vasco and Datta-Gupta, 1999; Brauchler et al., 2013; Somo-
gyv�ari et al., 2016]. If no breakthrough is observed within the simulated time, it is concluded that there is no
(relevant) advective pathway leading from one point to the other. However, such findings are just as valu-
able as when tracer concentrations are measured and hence are also considered for misfit calculation here.
The other four injections show very similar breakthrough behavior, with more spreading of those associated
with longer travel times.

The used control parameters for the inversion procedure are summed up in Table 1. Note that the configu-
ration of the inversion procedure does not allow for the exact reconstruction of the original DFN geometry.
This geometry shown in Figure 3a is considered the hydraulically active part of a greater fracture network,
which is expected to have a higher fracture intensity (0.7) with several inactive fractures that cannot be
identified. Also, a different FLD is used for the inversion which is chosen according to the scale of the exper-
iment [Torabi and Berg, 2011]. The used FLD follows a normal distribution with zero mean and variance of
25 m2. The discretization length of the DFNs is selected as 0.5 m. This level of discretization is capable of
representing a DFN with the chosen parameters (FLD, fracture intensity), while keeping the simulation time
of a tomographic experiment within a few seconds. The collected ensemble size was 30,000 realizations
and the calculation took 48 h on an office PC (IntelVR CoreTM i7–6700k 43 4.0 GHz). An additional crosscheck
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with a doubled rjMCMC chain length (60,000) gave similar results, meaning that the smaller size is suffi-
ciently large according to the given termination criteria.

The first few hundred accepted realizations in the sequence show a rapid decrease in the misfit (Figure 5a).
This phase is the burn-in period where the realizations are still influenced by the used initial solution. This
decrease stops after the first 1000 iterations. To completely eliminate the influence of this initial phase, the
ensemble was built after the 2000th accepted realizations. The evolution of the misfits of the individual
breakthrough curves (BTC) is presented in Figure 5b, normalized by the injection concentration of the
tracer. The burn-in period serves as the adjustment of the concentration curves with very high initial misfits.
After the initial period, misfits stabilize and fluctuate around small values. Often when there is an increase in
RMS error at one BTC, this is compensated by a decrease at another.

For further result analysis, the Markov chain is thinned to 300 realizations. The quality of the individual fits
on the BTCs is presented in Figure 5c. This figure serves as a first visual validation of the inversion results.
‘‘S#’’ represents the source number in the figures and ‘‘R#’’ denotes the observation points, according to the
source receiver configuration shown in the bottom right corner. These breakthrough probability maps are
generated similarly to the fracture probability map; rasterized BTCs are stacked together pixel-by-pixel. Fast
BTCs show very good fits, while slower ones are slightly offset. Source-receiver combinations where no
breakthrough was observed show perfect fits (see supporting information S1). This is because realizations
where this is not reproduced, provide very high misfits and they get rejected immediately.

Figure 6 depicts the fracture probability map created from the result ensemble. The geometry of the
hydraulically active fractures can be read from the high probability locations of the fracture probability
map. As the most striking feature, the location of the main connecting fracture can be determined from the
map: a high probability stripe connects the two wells. The most probable endpoints of this channel are
located at the same locations relative to the sources and receivers as in the original model. The probability
of the fractures connecting the source and receiver points with the aquifer is always 100% because they are
kept fixed and not subject to inversion. The location of the two high-inclination fractures that connect these
source-receiver fractures vertically is also visible in Figure 6 with high probability values. An additional low
inclination fracture is proposed on the left side of the map between the upper two injection (or detection)
points. The inversion is less sensitive to this area, probably because the two injection points nearby pro-
duced no breakthroughs. A large number of falsely identified fractures exist in the central area of the profile.
Most of these fractures belong to the high-inclination fracture set 2. As this fracture set is less relevant for
cross-well transport, it is more likely that some of such fractures freeze in and remain in many result realiza-
tions without any impact on the inversion. The additional low-inclination low-probability fractures provide
alternative pathways to the transport in different realizations, results in equivalent BTCs. In order to run the
inversion properly, higher fracture intensity was chosen than the synthetic reference, this is why many addi-
tional fractures exist within the individual DFN realizations. Most of these fractures are hydraulically inactive,
and may disappear due to the updates (thus have small probabilities in the fracture probability map). How-
ever, they cannot be discarded during the inversion, as they provide possibilities for fracture addition and
can become active in later iterations.

To separate the main DFN realization types within the ensemble, MDS is applied (Figure 7). The projection
of the point cloud shows a nearly symmetric shape. Note that the circular shape is the result of the projec-
tion that tries to minimize distortions in the sample distances and has no further significance here. We

Table 1. Parameters of the Inverse Modeling

Simple Model Field-Based Model

Fracture Set Set 1 Set 2 Set 1 Set 2

Fracture inclination (8) 10 110 212 58.9
Fracture aperture (mm) 0.3 0.2 0.15 0.1
Discretization length (m) 0.5 0.5
Fracture intensity 0.7 0.4
FLD – variance (m2) 25 72.25
Likelihood variance 1.5 1.5
Padd/Pdel/Pshift 0.4/0.4/0.2 0.4/0.4/0.2
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highlighted four different clusters of the MDS map (Figure 7a), originating from different phases of the
inversion process (Figure 7b). Figure 7c shows the differences between the clusters by presenting the
hydraulically active fractures from example realizations. The evolution of the different (but equally probable)
DFN realizations can be seen by going through the clusters. The example of the first cluster is the most
focused fracture network, with one choke-point on the right. This choke point remains in the second cluster,
but the network to the left of it gets more spread. This spread continues in the next two clusters, reaching
the right side of the domain as well. Yet in the fourth cluster, the fracture density in the center gets lower,
making it somewhat more similar to the first cluster.

In Figure 7a, the colors of the points show that each cluster is built up from consecutive realizations. Ideally,
after a large number of iterations, DFN realizations from the same clusters would not only contain samples
from the same stage of convergence. This is because after many iterations, the points would start to mix on
the MDS map as the inversion explores solutions again that have been reached earlier in the chain.

Figure 5. Inversion quality assessment. (a) RMS error of the accepted realizations through the Markov chain sequence. (b) Evolution of the misfits on the simulated breakthrough curves.
(c) Fit quality of breakthrough curves of the second half of the experiment (reverse direction) in the whole ensemble (breakthrough probability maps). ‘‘S#’’ represents the source num-
ber, ‘‘R#’’ denotes the observation point (receiver) number, according to the source receiver configuration shown in the bottom right corner.
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Although the latest realizations started to become similar to the first ones in our sequence, further analysis
of the longer (doubled) sequence showed that in fact no mixing had started to develop yet.

It is interesting to compare the example realizations (Figure 7c) of the clusters to the final fracture probabil-
ity map (Figure 7a). It is obvious that these realizations contain information of the final result, but none of
them is capable of representing the original fracture network alone. No big difference in the BTCs of the dif-
ferent clusters is visible, since the fit of the BTCs show minimal variance throughout the full ensemble (see
Figure 5c). The variations in the misfit values are mainly caused by the slowest breakthrough curves, which
are most affected by the differences between them, while the quickest transport routes are constant.

Changes in the geometry which modify the fastest transport pathways would alter multiple breakthroughs
at the same time. This type of changes drives the burn-in period of the rjMCMC sequence, where the gen-
eral transport pattern is adjusted to the observations. In the converged phase of the algorithm, these
updates are rare, as they only get accepted if they do not make a very large increase in the misfits. This

Figure 6. Inversion results of the synthetic scenario. (a) Synthetic fracture network model and (b) Inverted fracture probability map gener-
ated from 300 DFN realizations.

Figure 7. Ensemble visualization using MDS mapping (synthetic case) with the 300 selected realizations after sequence thinning. d1 and
d2 are the virtual dimensions of the MDS projection. (a) MDS map and identified clusters, (b) Convergence of the inversion with selected
realizations, and (c) DFN examples from the identified clusters.
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explains why the fracture probability map shows only one main transport pathway and not multiple differ-
ent ones.

Due to the highly discretized behavior, the risk of the algorithm to become trapped in a local minimum is
higher than in rjMCMC studies developed to interpret continuous problems [e.g., Bodin and Sambridge,
2009; Jim�enez et al., 2016]. The discrete geometry strongly limits the freedom of updates since, as always, a
limited number of possible updates are available. Using higher likelihood variance, the inversion can escape
from most of the local minimums, but posteriors with highly bi- or multimodal behavior could require multi-
ple model runs for complete sampling. In the presented scenarios, the inversion always converged to similar
solutions, independent from the initial realization.

5.2. Outcrop-Based Case
In the following, we present the results for the more complex outcrop-based fracture network (Figure 4).
The statistical properties of the outcrop (Figures 4b–4d) are taken to configure the search procedure
(Table 1). The fracture intensity of the middle part of the outcrop is used for the inversion (0.4). A truncated

Figure 8. Inversion quality assessment of the outcrop-based scenario. (a) RMS error of the accepted realizations through the Markov chain sequence. (b) Evolution of the misfits on the
simulated BTCs. (c) Fit quality of breakthrough curves in the whole ensemble (breakthrough probability maps). ‘‘S#’’ represents the source number, ‘‘R#’’ denotes the observation point
(receiver) number, according to the source receiver configuration shown in the bottom right corner.
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normal distribution is determined to approximate the FLD of the network, with the smallest allowed frac-
ture size of 1 m. With 0 m mean and 72.25 m2 variance, this approximates the distribution of the smaller
fractures in the investigated fracture network well. Very long fractures are only expected to be drawn as
outliers from the used FLD. Thus, very long fractures of the outcrop should be mainly built up by shorter
segments in the generated DFN realizations. The discretization length of the DFNs is 0.5 m. The inclinations
of the fracture sets in the inverse model are defined after inspecting the fracture inclination distribution of
the outcrop shown on Figure 4d, where two dominant fracture inclinations exist. The two used inclinations
are 2128 and 598, respectively. Note that due to this restriction, as well as due to the approximate settings
for fracture intensity and FLD, the investigated DFN geometry can only be approximated by the inversion
and not exactly reproduced.

Again, similar to the hypothetical case, 30,000 realizations were collected for the ensemble and 2000 realiza-
tions were discarded as burn-in phase (Figure 8a). The converged RMS error values are higher than in the
hypothetical case, because the experimental times were longer and the BTCs consisted of (five times) more
data points. As a consequence, the misfit values of the individual BTCs are higher for this case (Figures 8b
and 8c). At early breakthroughs (e.g., S1R4 or S2R4), the reconstructed breakthroughs are late. In compari-
son, latter breakthroughs show good fits except of S1R5. This one is the latest among all the BTCs, and it
also shows the weakest fit (200s late) with the largest variance. The used misfit criterion is most sensitive to
the elongated BTCs, where the increase in concentration spans through the whole time interval (e.g., S1R6,
S2R5). Thus, elongated BTCs are the main drivers of the inversion procedure. For example, comparing S2R6
to S3R5, the fit of S3R5 is better (Figure 8c) but the misfits are in the same range (Figure 8b).

The DFN results of the inversion are shown by Figure 9. A main feature of the original fracture network is that it
is split into two loosely connected fractured areas, an upper and a lower one. This is visible also in the fracture
probability map (Figure 9b). Some nonfractured areas of the domain are well reproduced and the strongly

Figure 9. Inversion results of the outcrop-based scenario. (a) Outcrop-based fracture network model, (b) fracture probability map of the
reconstruction, (c) convergence rate of rjMCMC (with the selected samples marked), and (d) MDS mapping of the ensemble subset.
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fractured area in the bottom left quarter of the original domain is recognizable in the fracture probability map.
Overall, the main transport pathways are easy to identify from Figure 9b, but the individual fractures often
appear multiplied. A closer look reveals that fracture set 2 consists of multiple doubled fractures, while fracture
set 1 has multiple quadrupled fractures. This is the effect of discretization and limited sensitivity of slightly
shifted fractures that cause minor change in the BTCs. In studies using continuous models, the same effect
appears as the smoothness of the final result [Bodin and Sambridge, 2009; Jim�enez et al., 2016].

The used discretization length was chosen to support fast computations. Since the value of 0.5 m is larger
than the smallest fracture spacing in the outcrop and the distance of the two wells are 50 m, it is considered
small enough for the DFN reconstruction. It is also smaller than the shortest mapped fractures of the investi-
gated fracture network. Under field conditions, the discretization level can be chosen based on the
observed spacing of the fractures. Using a small discretization length improves the resolution of the recon-
struction and it improves the fracture length estimation since the used FLD is also discrete. However, the
associated increase in degrees of freedom for fracture calibration means higher computation times and
hampers discrete identification of fractures. Coarser discretization levels may cause a neglect of relevant
small-scale features and could strongly limit the number of possible solutions delivered by the inversion.
Long fractures are more likely to be reconstructed, but with less accurate fracture length estimation.

The MDS map (Figure 9d) shows that the differences between the DFN realizations are significantly smaller
than in the hypothetical case. This means that the realizations are more similar to each other and the solu-
tion provides less equivalent tracer pathways than the hypothetical case. The point cloud is more mixed
even though it shows a general clockwise trend, but the points do not follow each other sequentially. This
could be an indicator on the completeness of the sampling, but also can be an effect of the small differ-
ences in the DFN geometries.

6. Conclusions

Fracture systems in hard rocks are commonly described by statistical information on orientation, spacing,
and intensity of fracture sets. This information is used to generate candidates of discrete fracture networks
(DFNs) that describe the hydrogeological conditions in the field. There is still a lack of techniques that allow
flexible calibration of DFNs to data from spatially resolved field measurements, which were obtained from
geophysical, hydrogeophysical, or hydrogeological investigations. A main hurdle is the often large number
of tuning parameters which is tied to the number of fractures used in the model. The number of fractures,
however, is not known a priori. This is tackled in this study by introducing a transdimensional inversion pro-
cedure (rjMCMC) that adjusts geometrical values and fracture numbers during the calibration. By processing
both the statistical description of the fractured rock and data from field experiments, a new concept of DFN
model calibration is developed.

The presented implementation of rjMCMC automatically develops a connected fracture network by sequen-
tially creating, deleting, and moving fracture segments in space. Its potential is evaluated with a simple syn-
thetic and a field-derived fracture network, which are both reconstructed based on conservative tracer
tomography experiments. As a result, an ensemble of DFN realizations is obtained that reveals highly proba-
ble locations of those fractures relevant for tracer transport. We introduced fracture probability maps,
extracted from the ensemble representative realizations based on clustering and multidimensional scaling.
These results can also be exploited for case-specific production probability assessment or risk assessment.

By comparison to the original DFNs, it was demonstrated that major geometrical features could be identi-
fied. It is also revealed that often equally probable geometries exist and adjacent fractures yield similar
results. Accordingly, small-scale variations could not be resolved. Ideally local high fracture intensities
appear in the fracture probability map as densely spaced active fractures with high probabilities. The main
control parameter for the obtained fracture resolution is the discretization, the role of which needs to be
further explored in sensitivity analyses. A logical next step is to include additional data from complementary
field tests, such as from near-surface geophysics which could reduce the nonunique behavior of the results.
As the presented Bayesian inversion framework allows joint consideration of different types of data, DFN
reconstruction could be improved when compared with using only tracer data as in the presented work.
There is also room for improvement by refining the misfit calculation of tracer BTCs, which is based on stan-
dard RMS error computation. For example, a weighted error calculation may be applied to adjust the
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significance of different source receiver combinations, or to control the importance of early, normal, and
late breakthroughs. Another possible option is to use selected tracer travel times instead of direct BTC
comparison.

In future work, we will also consider three-dimensional DFN reconstruction and calibration of the fracture
apertures. This will require a higher information density from (simulated) field experiments, or tighter con-
straints to localize sensitive (or active) fractures. The presented inversion framework is not limited to 2-D,
but an additional dimension will raise the computational time for the forward model and it will reduce the
convergence rate of the Markov chain. Note that for the presented cross-well sections, the forward model
was executed in a few seconds. So even with an additional dimension, and when simulating alternative
transport behavior (e.g., retardation of tracer), computation times will be in a feasible range. Aside from this,
promising advanced rjMCMC schemes (e.g., delayed rejection) [Bodin and Sambridge, 2009] and high-
performance computers have not been considered yet. Computational performance may be improved by
simulating shorter Markov chains in parallel and handling the results together. As with discarding realiza-
tions of the burn-in phase, the influence of the used initial solution can be minimized and sequences gener-
ated with the same control parameters may be handled together. However, during the development of the
method so far, we have focused on optimization for single chain performance. In the current version, the
implemented algorithm runs best on high single thread performance CPUs. Involving the fracture aperture
in the inversion would greatly reduce the convergence rate and increase the instability of the inverse prob-
lem. Thus inverting apertures will require additional constrains on the model parameters, or the involve-
ment of additional data in the inversion. Although the proposed methodology is presented for conservative
tracer tomography, other types of experiments, such as hydraulic tomography or alternative hydrogeophys-
ical investigations can be interpreted.
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