Home | People | Dr. Lisa Maria Ringel

Dr. Lisa Maria Ringel

MEng Lisa Maria Ringel

+49 345 / 55 – 26076

Room 4.23
von-Seckendorff-Platz 3
06120 Halle (Saale)

Dr. Lisa Maria Ringel

+49 345 / 55 – 26076

Room 4.23
von-Seckendorff-Platz 3
06120 Halle (Saale)

About Me

My research focuses on the stochastic characterization of discrete fracture networks (DFNs). I use data from tomographic experiments to infer the properties of DFNs. For this purpose, I work on the  implementation of fast forward models by suitable numerical methods and I compare different inversion approaches by their efficiency and performance.

Research Interests

■  Numerical Methods
■  Inversion
■  Bayesian statistics
■  Hydraulic and Tracer Tomography

CV

2019 – today | Research Assistant
Martin Luther University Halle-Wittenberg,
Applied Geology

2019 – 2023 | PhD student
Martin Luther University Halle-Wittenberg,
Applied Geology

2018 – 2019 | Research Assistant
Ingolstadt University of Applied Sciences, Institute of New Energy Systems (InES)

2018 | Master‘s thesis
German Aerospace Center, Institute of Aeroelasticity
Title: Preliminary design of a wind tunnel experiment for transient shock boundary layer interaction

2017 – 2018 | M. Eng. Technical Development in Mechanical Engineering
Ingolstadt University of Applied Sciences

2015 – 2018 | Scholarship holder
Max Weber-Program

2013 – 2017 | B. Eng. Renewable Energy Technologies
Ingolstadt University of Applied Sciences

Publications

Soltan Mohammadi, H., Ringel, L. M., Bott, C., Bayer, P. (2024). Adaptive management of borehole heat exchanger fields under transient groundwater flow conditions. Renewable Energy, 121060.

Soltan Mohammadi, H., Ringel, L. M., de Paly, M., Bayer, P. (2024). Sequential long-term optimization of shallow geothermal systems under descriptive uncertainty and dynamic variation of heating demand. Geothermics, 121, 103021.

Ringel, L. M., Illman, W. A., & Bayer, P. (2024). Recent developments, challenges, and future research directions in tomographic characterization of fractured aquifers. Journal of Hydrology, 631, 130709.

Römhild, L., Ringel, L. M., Liu, Q., Hu, L., Ptak, T. & Bayer, P. (2024). Hybrid Discrete Fracture Network Inversion of Hydraulic Tomography Data From a Fractured-Porous Field Site. Water Resources Research, 60, e2023WR036035.

Jiang, Z., Ringel, L. M., Bayer, P. & Xu, T. (2023). Fracture Network Characterization in Reservoirs by Joint Inversion of Microseismicity and Thermal Breakthrough Data: Method Development and Verification. Water Resources Research, 59(9), e2022WR034339.

Ringel, L. M., Jalali, M. & Bayer, P. (2022). Characterization of the highly fractured zone at the Grimsel Test Site based on hydraulic tomography. Hydrol. Earth Syst. Sci., 26, 6443–6455.

Ringel, L. M., Jalali, M. & Bayer, P. (2021). Stochastic Inversion of Three-Dimensional Discrete Fracture Network Structure With Hydraulic Tomography. Water Resources Research. 57(12), e2021WR030401.

Ringel, L. M., Somogyvári, M., Jalali, M., & Bayer, P. (2019). Comparison of Hydraulic and Tracer Tomography for Discrete Fracture Network Inversion. Geosciences, 9(6), 274.

Logo applied geoology
Logo applied geology favicon

N. N.

Secretary

Tel.: +49 345 / 55 – 26012
Fax: +49 345 / 55 – 27175

sekretariat@geo.uni-halle.de

Room H3 1.30
von-Seckendorff-Platz 3
06120 Halle (Saale)